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The twenty-Eighth Conference on the Design of Experiments in Army Research,
Development and Testing had as its host the U. S. Army Combat Development
Experimentation CommandA Fort Ord, California. It was held at the Hilton Inn
Resort, Monterey, California, on 20-22 October 1982. A brief history of the
host installation appeared in a booklet issued the a tendees at this meeting.
Exerpts from this booklet are reproduced below.

COMBAT
DEVELOPMENTS

LU.S. ARMY COMBAT EXPERIMENTATION
DEVELOPMENT OMMANDVEXPERIMENTATION TS United States Army Combat .D.v -

ments Experimentation CommandSwas estab-
COMMAND ished in 1956 at Port Ord, Calif., setting the

stage for the Introduction of a new form of mili-
tary evaluation.., the Combat Field Experi-
ment. - - - - - --.. . .. . .. .

The command Is more familiar to manyR
pie, military and civilian alike, as "CDEC,'.VW
Its highly sophisticated electronic field
laboratory, located at Fort Hunter Liggett,
CDEC's military-scientiflc team has the mission
of providing hard factual answers to basic ques-
tions about how the Army of the future should
be organizea, how It should be equipped and
how It can best figh"ti•

To provide such answers CDEC has
developed a method of evaluation significantly
different from anvihirg previously available to
the military decision mai'er, CDEC applies the
technique of the scientific field experiment to
military systems and problems. Experiments are
conducted under conditions simulating as
closely as possible those of an actual combat
situation,

CDEC began with soldiers armed with stop-
watches, compasses, slide rules and clipboards
as date collection systems. Today, CDEC has
evolved Into a high technology command using
computers, lasers, Intervisibility equipment,
an accurate position location system and other
sophisticated measurement equipment. (----._. ,

"Vision to Victory" Is CDEC's motto. It Is a
vision with a purpose that centers on the pro-
duction of hard data through field experimenta-
tion and operations research pointing the way to
the Army of tomorrow.

FORT ORD,
CALIFORNIA
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CDEC

CDEC's experiments Involve highly realistic
mock bottles during which casualties from
various'types of engagements are taken out of
the battle by a computer operating as a high-
speed, impartial umpire.

Here, weapons "fire" beams of light Instead of
live ammunition. Each weapon Is equipped with
a low-power, eye-.safe laser system and each 1.
moldier-player or vehicle, such as a tank or
aricrft, has several laser detectors which send
signals when "hit" by a laser beam. The players
and weapons are linked by radio to a central 1, _W
cow a laser Is fired, a coded Impulse Is sent *"e""M .O

to the computer. If the beam hits any of several
laser detectors on the target, Its particular coded
Impulse allows the computer to determine in-
stantly which weapon It came from, Its location
and whether It was powerful and close enough to
destroy the target. These Instruments tell play- -. ,
era almost Instantly If they were "hit' or
"missed" during these simulated firefights. ,_

Computers take tanks and other vehicles out
of action when hit by simulated fire. Whrn
ammo loads are exhausted, these same ,.om-
puterized systems can simply "turn off" the
players' weapons.

U.8. ARMY COMBAT

.. L= DEVELOPMENTSEXPERIMENTION

COMMAND
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The Army Mathematics Steering Coumiittee (AMSC), the sponsor of the Conferences
on the Design of Experiments, appreciates the fact that the Combat Development
Experimentation Command was willing, for a second time, to serve as host for
these conferences. For both of these meetings, Dr. Marion Bryson, Scientific
Advisor, USA CDEC, has served as chairman on local arrangements. His careful
planning helped make these two of the most profitable meetings in this series
of statistical symposia.

The Program Committee would like to thank Dr. Larry Crow of the U.S. Army
Materiel Systems Analysis Agency for organizing the "Special Software Test and
Evaluation Session"; and alio Mr. Langhorne Withers, U.S. Army Operational Test
and Evaluation Agency, for arranging a special session devoted to "Logistic
Supportability". The agenda gives information about these two interesting
solicited events for this conference. Members of the Program Committee feel
they were fortunate in obtaining the following nationally known scientists to
give invited addresses at this meeting.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor Brad Efrom Bootstrap Methods
Stanford University

Professor Lao Breiman Tools in Data Analysis
University of California-

Berkeley

Professor David W. Scott Nonparametric Bivariate Density
Rice University Estimation as a Tool for Data

Analysis

Professor Nancy R. Mann The Tnfluence of W. Edward Deming
University of California- va the Implementation of

Los Angeles •tatistical Quality Control--The
Early Days and Now

Another event associated with this conference was a tutorial seminar on
"Non-Parametric Statistics". It was given, on 18 - 19 October 1982, at the
U.S. Army Combat Developments Experimentation Command by Professor William
J. Conover, Texas Tech University.

The winner of the second Wilke Award for Contributions to Statistical Methodolo-
gies in Army Research, Development and Testing was presented to Professor
Bernard Harris of the Mathematics Research Center, University of Wisconsin--Madison,
at a banquet held at the Naval Postgraduate School on Wednesday night, 20
October 1982. This honor was bestowed on Dr. Harris for his many contributions
to various statistical fields. He has helped Army scientists with many of
their design problems, and his advice in concucting these conferences has
proved invaluable. He recently developed, together with Dr. Andrew P. Soma,
new methodologies and optimality results for the long unsolved problem of
confidence bounds for system reliability.

Members of the AMSC feel that it is appropriate to again express their thanks
to Mr. Philip G. Rust of Thomasville, Georgia for endowing both of the Wilke

v
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Awards. The first one entitled$ "The Samuel S. Wilks Memorial Medal and
Award", was initiated in 1964 and is now being administered by the American
Statistical Association. The second one, initiated in 1981, Is called "The
Wilke Award for Contributions to Statistical Methodologies in Army Research,
Development and Testing", and is under the auspices of the AISC.. Mr. Rust's
generous gifts In memory of his friend, Sam Wilke, will contribute to the
welfare of the military services as well as foster statistical science in
general.

""I I ' 01 , 5 - iA
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ENTROPY INTERPRETATION OF GOODNESS OF FIT TESTS

Emanuel Parzen
Institute of Statistics

Texas A&M University

ABSTRACT. This paper describes a synthesis of statistical reasoning
calleaTTU TAT (because it is fun; functional (useful); based on functional
analysis; estimates functions; and all graphs are of functions). FUN.STAT has
three Important components: quantile and density-quantile signatures of
populations, entropy and information measures, and functional statistical
Inference.

A FUN.STAT approach to the problem of identifying the probability
distribution F(,x) of a random variable X from a random sample is outlined.
To identify F0 in the location-scale parameter model F(x) a Fo((X-V)/a), wo
estimate entropy difference A a H°(f) - H(f). H(f) is Shannon entropy and
lio(f) a log a + H(fo0 is entropy of the assumed model (which may maximize
entropy). Estimators H1 , H2, H3 of H(f) are defined which are respectively

-fully paramptric, fully non-parametric and parametric-select. Significance
levels for A are obtained by Monte Carlo methods. The family of
parametric-select estimators of A may provide optimum tests of Fo (such as
normal or exponential) and estimators of F when one rejects Fo.

KEY WORDS: Entropy-based statistical inference, goodness of fit tests,
test for normiltty, Shapiro-Wilk statistic, quantile, density-quantile,
quantile-density, autoregressive density estimator.

1. INTRODUCTION. Let X1I,..,Xn be a random sample of a continuous

random variable X with distribution function F(x.) - Pr[X.x], -- <x-, and

quantili -function Qýu) a Fat(u), <u<l,. Tests of normality or exponentiality
are special cases of a locat on-sci'lI parameter model, which we denote by the
hypothesis

H0 : F(x) F 0(-X), Q(u) * + a Q (u)

where Fo(x) is a specified distribution with quantile function Qo(u). Table 1

lists. Fo and Q for various standard distributions.

Research supported by the U. S. Army Research Office Grant DAAG 29-80-C-0070.
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Table 1. STANDARD DISTRIBUTION FUNCTIONS

AND QUANTILE FUNCTIONS

Nama F(x) WQ(u)

Normal #(x) • j,.x (y) dy , 'I(U)

Wx) (2w)" exp - N x2

Exponential 1 - eIX log (l-u)"1

1*X, ,,xX (1og 0luF)" -

Quantile shape '

.4, parameter --

Extreme value 1 - ex log log (l-u)"I

of minimum

Extreme value e0e0x - log log u"1

of maximum -00Xcl

Log normal W(log x), x:O exp 0'l(u)

Logistic 1 (l+*X)1 log u

-,-
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Many statistics have been introduced by statisticians to test the
composite (location and scale parameters unspecified) hypothesis of normality.
A superior omnibus test of ngrmality (in terms of power) seems to be provided
by a test statistic W - 02/0l , where ;1 and ;2 are scale estimators defined
as follows: al i, sample standard deviation, while 02 Is a linear combination
of order statistics estimator of a. We call W a statistic of Shapiro-Wilk
type because it is a variant of a test introduced by Shapiro and Wilk (1965)
and Shapiro and Franctia, (1972).

The question arises: to discover a motivation for the W statistic which
explains the source of its power, and to use this insight to extend W to
other distributions Foe In this paper we propose that the power of W can be

explained by representing it as an "entropy difference" test statistic. We
show that the test statistic for normality introduced by Vasicek (1977) is
also an entropy difference statistic, as are test statistics introduced in
Parzen (1979).

2. INFORMATION DIVERGENCE AND ENTROPY. To compare two distribution
functions Fi(x) and G(x)"wvth probi btlity densities f(x) and g(x), a useful
measure is information divergence, defined by

I(f;g) a r={-log •-•) f(x) dx

It can be decomposed into cross-entropy

H(fig) - f.{-log g'(x)) f(x) dx

and ent.ropy

H(f) - H(f;f) w f".{-log f(x')} f(x) dx

by the important identity

"0 < I(f;g) n H(f;g) - H(f).

To estimate entropy it is useful to express it in terms of the quantile
density function q(u) and density-guantile function fQ(u) defined by

q(u) - Q'(u), fQ(u) - f(Q(u)) a {q(u))"

By making the change of variable u a F(x) one can show that

H(f) fl - log fQ(u) du

fl log q(u) du.
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Under the hypothesis H that F(x) w F ((X-u)/cv), a location-scale model.
q(u) - aq0 (u) and

H(f) - log a + H(fo).

.3. ENTROPY DIFFERENCE TO lEST GOODNESS OF FIT. To test the hypothesis
HO we propose to investigatei (and eventualiy ei-isablTsh how to use optimally)
test statistics which are entropy-difference statistics

A(f) - H0 (f) - H(f)

where H°(f) is a parametric evaluation of the entropy of f, evaluated under
the assumptinn that it obeys Ho, defined by

H(f) - log a +'

while Hlf)ts a non-parametric evaluation of H(f), usually most convenientlyobtained by

H(f) fl log q(u) du

To estimate H(f) we have three types of estimators which we call

H1I fully parametric estimator,

A2  fully non-parametric estimator,
A

H3 smooth or parametric select estimator

Similarly to estimate I1°(f) we have several types of estimators depending on
the estimator ajwe adopt for a; thus

401 log Gj+ H(f0)

Three Important possibilities for G1 are:

&! maximum likelihood estimator,

02 Optimal linear combination of order statistics estimator

;q estimator of score deviation as - 4 foQo(u) q(u) du.

Under H these estimators are all asymptotically efficient estimators of d'.

'i4



While one can conceive of about 9 possible estimators of the entropy
difference A, we discuss only three estimators which we denote ý11, 112,
and s•

-. 4. ENTROPY-DIFFERENCE INTERPRETATION OF SHAPIRO-WILK STATISTIC
To test the hypothesis Ho: X is N(u,a2-), a test statistic W of

Shapiro-Wilk type is of the form

where ol is the sample standard deviation and

A nu I l {Ji0.5 3 -051

is an asymptotically efficient estimator of a based on linear combinationsSof the order statistics X(1 )< ... <X(n) of the random sample. The first step
in the entropy interpretation of W Is to consider instead the statistic

'f • - log W alog a - log•a 2 o Hl"1

where [with fe(X) - #(x) - (2j.)"4 exp -(4m) x2, and H(f) ( + log 21)]

H -0 log 01 + H(f0 )

is an estimator of H°(f) based on Uz, and A is a purely parametric estimator

of H(f) based on the parametric estimator 02; note H1 a At.

Significance levels for the entropy-difference statistic Al logW
are obtainable Yrom tables of the W statistic [for example, Filliben (1975)).
An example of 5% significance levels (for accepting normality) are

Ai x 0.05, for sample size n - 20 ;
A

Aii ! 0.023, for sample size n - 50

5. ENTROPY-DIFFERENCE INTERPRETATION OF VASICEK STATISTIC
Yo'otest the hypothesis H :'X is N(I',cZ) Vasicek (0f_ pro'poses a

statistic which is equivalent 0 to

he 41 IA A

where HO is an estimator of the parametric evaluation H0(f) of entropy, and
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H2 is a fully non-parametric estimator of H(f) based on the gRE or leaR (of
order 2v) estimator

iv'54T)-,'nr (Xj+V) - X U)0 , jv+l,,...,n-v

of q(j/(n+l)), and

H2  qn
A

Some significance levels of Az are given in Table 2; they are transformations
of the significance levels given by Vasicek (1977) and obtained by Monte-Carlo
simulation.

6. ENTROPY-DIFFERENCE INTERPRETATION OF PARZEN GOODNESS OF FIT PROCEDURE

To test the general hypothesis Ho: X is Fo(kk-), Parzen (1979) proposes
forming raw estimators a(u) of ,,

d(u) LOfQ,(u) q(u)
Go 0

where ao 0 foQo(t) q(t) dt. To form d(u) and co we replace q(u) by the

least smooth gap estimator q2 (u). Smooth estimators dm(u) of d(u) are
formed by the autoregressive method. From estimators of the pseudo-correlations

p(v) . fl e2wiuv d(u) du, vmO,+l,...,+m

one estimates the coefficients of the autoregressive order m approximator

dm(u) - Km I + am(1) e2viu +...+am(m) e2ftum1'2

to d(u). The coefficient Km pliys an important role in entropy calculations
since

can be regarded as an e m - log d(u) du of A.

This formula, which we prove below, provides an entropy-difference
interpretation of the goodness of fit procedures in Parzen (1979).

To prove this interpretation of A33, write

-log d(u) logo - log f Q (u)-log q(u)
0 ~0 0

6
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Therefore

1 - log d(u) du - HO(f) - H(f)

is an entropy-difference.

The autoregressive estimator dm(Usm) of d(u) provides a parametricselect estimator of q(u) by

q(u)- ao i (u) qo(u)

A parametric select estimator of H(f) is

H -/ log •(u) du
I/ ^o a(u) du + R°

fe log d u +

where

H• log ;o + H(fo)

is an estimator of HO(f) based on

The parametric select entropy-difference test statistic A33 should be
denoted ass - because it depends on the order m of the autoregressive
estimator am(u) of d(u). Significance levels of AS3,m derived by a very

approximate Monte Carlo simulation (in the case of testing for normality)
are given in Table 2. They show that the parametric select estimators of A
provide a smooth progression of significance levels from the fully parametric
estimators of A to the fully non-parametric estimators. In practice, we
recommend adaptive determination of the order m by the data, rather than
choosing a fixed order m.

It may be useful to use a rough approximation to the 5% significanceA

levels of A33,m which is provided by 3m/n. A criterion for accepting HO: X

Is FolX1) is:

SS,m-- log ck , m-1,2,..,

One rejects. H0 if there exists a val~ie of m for which the Akaike-type criterion

AIC(m) mn + log Km<. 0O

Un
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the value of m which minimizes AIC(m) is chosen as an "optimal" value m.
An optimal parametric-select estimator of the true quantile-density function
q(u) is

qm (u)uci dm(u)qo(u)"m 0 m 0

7. CONCLUSION
We believe that the interpretation given in this paper of powerful

goodness of fit procedures as entropy-difference statistics provides a
striking demonstration of the FUN.STAT synthesis of statistical reasoning.
In addition to elegance of the theory, very practical and implementable
procedures are obtained.

The parametric select estimators As,m of entropy-difference test

statistics for goodness of fit have for m-l approximately the properties of
fully parametric estimators (such as Shapiro-Wilk ^41) and have for large
values of m approximately the properties of fully ngn-parametric estimators
(such as Vasicek AZ12 ). Thus it appears the series A33 provide all the test-
statistics required. Further the autoregressive approlEh provides
non-parametric estimators of the true distribution when one rejects the null

* hypothesis Ho.

One may find that a sample passes the goodness of fit procedure for two
null hypotheses. An appealing procedure, wose properties remain to be
investigated,is to choose that null hypothesis for which it, is always less
than the corresponding statistic for the other hypothesis.--,

The entropy-difference statistics 633 m are implemented in our one-sample

univariate data analysis computer program 6NESAM. Table 3 lists auto-
regressive estimates of entropy-difference when testing for normality data
sets in Stigler (1977). An asterisk indicates a data set which is not
normal in our judgement.

In Table 2 we report significance levels for a 2 obtained (by Monte Carlo
calculations) by Dudewicz and van der Muelen (1981) in the case of testing for
uniformity rather than normality.

The closeness of the Dudewicz-van der Muelen levels to the Vasicek
levels suggests a conjecture, which remains to be proved, that the entropy-
difference statistics have distributions which are approximately the same
for all null hypotheses Ho: X is Fo(k-

A final noteworthy feature is that the autoregressive method of
estimating quantile-density functions and density-quantile functions.
introduced in Parzen (1979), can be shuwn to have a maximum entropy
property [compare Parzen (1982)].
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L":.

Thble 2. 5% SIGNIFICANCE LEVELS FOR ENTROPY DIFFERENCE STATISTICS

Accept Ho: X is N(p,o 2 ) for some v and a if entropy difference is less than
threshold given.

Ali A33m 12
Autorepressive order m Vasicek gap estimator VU. u)

Sample Shapiro- Monte Carlo 5% level (Dudewicz-van der Mueler
Size n Wtlk (roguh approximation 2m/n)

-" m-Z m- ' -i v- 5  v-4 v•3 v•2 v•1

20 .05 .141 .235 .299 .378 .398 .40 .40 .43 .61
(.10) (.20) (.30) (.40) (.50) (.43 .43 .47 .66)

so .023 .045 .081 .126 .153 176 .21 .21 .23

(.04) (.08) (.12) (.16) (.20) (.22 .22 .24)

Shapiro-Wilk and Vasicek levels are based on Monte Carlo simulation of normal;
Dudewicz-van der Muelen levels are based on Monte Carlo simulation of uniform.

One can conjecture a relation between pap order 2v and autoregresstve order
m for the corresponding estimators to have similar distributions and therefore
s.imilar significance levels:

(2v) m .- n - sample size

To understand what this conjecture is alleging note that for n-20, m-4 is
similar to 2v - 6; for n-50, m-6 is similar to 2v - 8.

When one uses gap estimators of q(u), and thus of entropy, one has the
problem of determining the order 2v. One can more easily develop criteria
for determining the order m of autoregressive estimators of q(u).

9
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Table 3. ANALYSIS OF STIGLER (1977) DATA SETS BY ONESAM PROGRAM

AIC(im) Opt.

Order

Stigler Sample
Data Size
Set v-1 vW2 v-3 ml m-2 m-3 m1l m-2 m-3 m

1 18 .042 .025 .057 .04 .08 .17 .07 .15 .17 0
*2 17 .193 .030 .042 .21 .27 .34 -.10 -. 03 .02 I

3 18 .108 .027 .047 .11 .14 .17 -. 00 .08 .16 0
4 21 .057 .159 .041 .06 .20 .21 .04 -. 01 .08 2
.5 21 .146 .016 .041 .16 .17 .22 -. 06 .01 .07 1

6 21 .047 .102 .002 .05 .13 .15 .05 .06 .14 0
7 21 .041 .046 .040 .04 .11 .18 .05 .08 .11 0
8 21 .079 .047 .011 .08 .18 .27 .01 .01 .02 0

"*9 20 .285 .235 .124 .34 .42 .42 -. 24 -. 22 -. 12 1

10 20 .027 .059 .045 .03 .09 .1 .07 .11 .15 0
11 26 .046 .006 .033 .05 .06 .11 .03 .09 .12 0
'12 20 .107 .001 .023 .11 .13 .13 -. 01 .07 .17 1
13 20 .084 .027 .063 .09 .16 .20 .01 .04 .10 0

"*14 20 .162 .094 .130 .18 .22 .39 -. 08 -. 02 -. 09 3

15 20 .066 .006 .001 .07 .09 .09 .03 .11 .21 0
*16 20' .080 .066 .093 .08 .17 .44 .01 .03 -. 14 3

17 23 .065 .014 .038 .07 .11 .14 .02 .07 .12 0

19 29 .002 .09 .008 .00 .02 .03 .07 .12 .18 0

10
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EXACT PROBABILITY LEVELS FOR MULTI-SAMPLE SMIRNOV-TYPE STATISTICS

William E, Baker
Malcolm S. Taylor

Experimental Design and Analysis Branch
Systems.Engineering and Concepts Analysis Division

U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

ABSTRACT. Let there be given c independent random samplos of continuous

random variables of size nI, n2 , ... ,nc; and denote the observations in the

Sith sample by xl, x 2 , ...1 Xin . Suppose it is desired to test the null

hypothesis that the samples all come from the same population.

Birnbaum and Hall proposed for this null hypothesis the test statistic

D(n1,,r2 0 ... snc) a xsup jIFi(x) - F (x)

for ij m 1,2, ... ,c, where Fi denotes the empirical cumulative distribution
1th 

I
function for the i sample. In their 1960 paper they published the proba-

bilities P[D(n,n,n) 4 r] for n m 1(1)20(2)40 where r a k/n, k n 1,2, .,.,n.

The tables referenced here are an extension of the Birnbaum-Hall Tables,

resulting from the examination of a larger number of samples and the considera-

tion of unequal sample sizes. In addition, an application of this work to a

problem in ballistics is discussed. Although length precludes the inclusion

of the tables in this paper, they are available in a technical report published

by the Ballistic Research Laboratory under the same title.

I. INTRODUCTION. Let there be given c independent random samples of con-

tinuous random variables of size nl,, n 2, .. , ,nc, where n1 + n2 + ... + n€ • N;

and denote the observations in the ith sample by xill xi2  . , .Xin Suppose

it is desired to test the null hypothesis that the samples all come irom the

same population.

Birnbaum and Hall* proposed for this null hypothesis the following

two-sided and one-sided test statistics respectively:

Birnbaum, Z.W. and Hall, R.A., "Small Sample Distributions for Multi-Sample
Statistics of the Smirnov Type," The Annals of Mathematical Statistics,
Vol. 31, No. 3, pp. 710-720, September 1960.
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D(nln 2  )) Sup IF.(x) - Fx)lD~ln'" n) x,i,j 1 AI

20.3

D (n1,n ... On.) W Sup [Fi(x) - FW(x)]
•th

ipj u 1,2, ... ,c, where Fi denotes the empirical cdf for the ith sample.

II.. COMPUTATIONAL METHODS. Under the null hypothesis, the c samples may

be considered as c successive drawings of nl,n 2, .,. ,nc observations from the

same population, with equal probability of each of the NI ways of drawing the

ordered sample of size N. The values taken on by the random vector

[IF(x), (X),p... ,cF (X)], for fixed x, after a component-wise transformationiiS kt - niF 1 (x), establish a one-to-one correspondence between the combined ordered

samples and a path in c-space from (0,0, ... ,0) to (nln 2 , ... ,nc). The number

of distinct combined ordered samples (paths) is Nl/(n In2 1 ... n 1), each of

which is equally likely to occur under the null hypothesis.

Introducing the notation

Q(klk2, ... ,kc) w number of paths from (0,0 ... ,0) to (k1 ,k 2, ... ,k

the following difference equation is established:

Q(klpk2, so. ,kc) m Q(kil-k20 ,k0) + Q(klpk 2-1, se ,kc) +..

+ Q(kl,k 2 , 20 *s kc-l)

with initial condition Q(O,0, ... ,0) - 1.

For a given subset R C R - {(klk 2 , ... ,kc)1O < k < ni, i,2, ... ;c,

let Q(klk 2, ... ,kC;A) - number of paths from (0,0, ... ,0) to (kl 1k2, ... ,kc)

not containing points of R.

And, as before

Q(kl'k 21 ... kc;A) "Q(kl'l lk2' "• kc;R) + Q(klak2"l', ... k csA) + .

+ Q(klk 2 0 "'. ,kc-l;R)

with conditions

14
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Q(0,0, ... ,0) u,

20 ,k0 o ) - 0, for (kl,k 2, ... o kf ) k R.

Under the null hypothesis, the probability that the samples determine a

path from (0,0, ,.. ,0) to (n ln 2, ,.. ,nc) which does not encounter any

point of R is

PRt " Q(nl10121 ... Pnc;A)/[Nl/(nlln21 ... nc 1)].

If our decision rule is to reject the null hypothesis whenever the samples

determine a path containing points in a given set R, then I - PA is the proba-

bility of an error of the first kind.

The regions of rejection for the two-sided and one-sided tests, are

respectively

D(n 11n2 , ..P ,ne ) > r and D÷ (n 11n2 , ... ,n) > To

which determine the corresponding sets Rp R÷

Sw ((k 1,k2, ... ,k) Sup I njki - nikj) > ninjr),
ij

m -2. .... kc)l Sp(ft k k- )

where i,j * 1,2, ... PC.

The tables were computed by evaluating the difference equation for

Q(kljk 2, *as ,kc;R).

For sample sizes not included in the tables, the inequality

P[D(nln 2 , ,n€) C r] - P[ Sup j PF(x) - F;(x)I'< r]z,i,j

*1 - P[SupjF (x) - ;(x)l > r for some i <
x

;0 1 - E E ... E P[D(ni:n. ... ,nk) > r], k < €,

15

9, ,, 9 ... . . . i . . . 9 . . . . .. . . .. . . -. . . . . . . . . . . .
p

4  
*~ *.1L r~ , 4 '. .'

4. -,* ... * * ,. , - -9 ce.6 ,A' ~9



.allows the tabled values for both equal and unequal samples to be used to

test the null hypothesis. The test will be conservative, but should prove

useful for the range of values of c for which it would likely be applied.

Asymptotic expressions are not available for extension of these tables.

As a matter of fact, Hodges* points out that asymptotic expressions

advanced for the case c u 2 are inaccurate to an extent that their usefulness

is questionable,

III. HXACT TABLES. In their paper, Bi rnbaum and Hall published the proba-

bilities P[D(n,n,n) 4 r] for n m 1(1)20(23)40 and r a k/n, k a 1,3, .. ,n, sunh

that the probabilities for each n range from less than .90 to more than .995.

The tables referenced here are an extension of the Birnbaum-Hall tables.

The first table contains the probabilities P[D(n, ... ,n) 4 r) with the number of

independent samples of size n ranging from three to seven and the correspond-

ing sample sizes taking on values from sixty for the three-sample case to

five for the seven-sample case. Birnbaum and Hall's values are a subset of

the first table as indicated in .1iure 1.

Perhaps of more importance, the second table contains the quantiles that

allow the test to be applied to samples of unequal size, an option presently

not available. Here for the useful cases c - 3, 2 4 nln 2 ,n3 I 25 and

c a 4, 2. n1 ,n 2 ,n 3 ,n 4 4 15, are tables P[D(n 1 , ... ,n0) 4 r] for r • 0.1,0.2,

.1.0 as represented in Figure 2.

a c

is ni 25

60

n 25.
30

66 60

Figure I Figure 2

Hodges, J.L., Jr.s "The Significance Probability of the Smirnov Two-Sample
Test," Arkiv fur .Hathematik, Vol. 3. 1957. pp. 469-486.
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IV. EXAMPLE. For purpose of illustration, consider four independent

random samples, of sizes five, seven, seven, and th:Lrteen respectively.

Sample I -0.927, -2.243, 0.815, -0.341, -0.250

Sample II -0.451s -1.516, -1.447, 0.504, 1.645, 0.022, 1.098

Sample III 0.032s -1.772, 1.049, -0.073, -2.053, -1.123, 0.799

Sample IV 0.250s -0.185, -0.028, 0.004, -0.462, -0.032, 0.279, -1.053

0.597, 0.235, O.SlO 1.103, 0.241

The null hypothesis to be tested is that all four samples come from the same

distribution. Evaluation of the statistic D(5,7,7,13), ordinarily programmed

for machine calculation, can be carried out in the following manner:

1) Pool and order the samples

-2.243, -2.053, -1.772s -1.516, -1.447p -1.123, -1.053, -0.927

-0.462, -0.451, -0.341l -0.250l -0.185, .0.073, -0.032l -0.028

0.004, 0.022, 0.032m 0.235, 0.241s 0,250, 0.279, 0.504

0.510, 0.597, 0.799, 0.8151 1.0491 1.098, 1.103, 1.645

2) For every x in the pooled sample, evaluate Fi(x), i 1,2,3,4, and

calculate Sup tFi(x) - P;(x)I, j a 1,2,3,4

.1
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1 F(x) F2;(X) SupX

-2.243 I/5 0 0 0 0.20
-2.053 1/5 0 1/7 0 0.20

-1.772 I1/5 0 2/7 0 0.29

-l.S16 1/5 1/7 2/7 0 0.29
-1,447 1/5 2/7 2/7 0 0.29

-1.123 1/S 2/7 3/7 0 0.43
S -1.0S3 1/5 2/7 3/7 1/13 0.35

-0.927 2/5 2/7 3/7 1/13 0.32

-0.462 2/S 2/7 3/7 .2/13 0.28
-0.451 2/5 3/7 3/7 2/13 0.28
-0.341 3/s 3/7 3/7 2/13 0.45
-0.250 4/5 3/7 3/7 2/13 0.65
-0.165 4/5 3/7 3/7 3/13 0.57
-0.073 4/5 3/7 4/7 3/13 0.57
-0.032 4/S 3/7 4/7 4/13 0.49

-0.028 4/5 3/7 4/7 S/13 0.42
0.004 4/5 3/7 4/7 6/13 0.37
0.022 4/5 4/7 4/7 6/13 0.34

0.032 4/S 4/7 S/7 6/13 0.34
0.235 4/5 4/7 5/7 7/13 0.26
0.241 4/S 4/7 5/7 8/13 0.23

0.2SO 4/5 4/7 5/7 9/13 0.23
0.279 4V5 4/7 5/7 10/13 0.23
0.504 415 5/7 5/7 10/13 0.09

0.510 4/5 S/7 5/7 11/13 0.13
0.597 4/5 S/7 S/7 12/13 0.21

0.799 4/S 5/7 6/7 12/13 0.21
M0.15 5/5 5/7 6/7 12/13 0.29
1.049 S5S 5/7 7/7 12/13 0.29

1.098 SS 6/7 7/7 12/13 0.14

1.103 5/5 6/7 7/7 13/13 0.14
1.645 5/5 7/7 7/7 13/13 0.00

18



3) Choose tho largest number appearing in the final column; that is
D(5,7,7,13) 0 .65.

The critical level a is defined as the smallest significance level at which

the null hypothesis would be rejected for the given observations. The second

table shows that if the four samples were from the same population,

P[D(5,7,7,l3) -4 .6] a 0.701271 and P[D(5,7,7,13) 4 .7] w 0.827140.

Therefore, P[D(5,7,7,13) > .6] a 0.298729 and P[D(5,7,7,13) > .7] w 0.172860.

Since, in this example, D(5,7,7,13) m 0.65, a would be between 0.18 and 0.30.

V. APPLICATION. The test found application in a bomblet study conducted

at the Ballistic Research Laboratory. In this study, bomblets were supplied by

three different vendors. Fifteen bomblets from one vendor were filled with a

high explosive; thirty bomblets supplied by each of the other two vendors con-

tained an inert substance. All bomblets were subjected to the same field text,

meant to simulate the dispensing of a bomblet by a type of munition; this

resulted in an out-of-round characteristic. A measurement was then taken in

order to determine the degree of ovalness. The experimenter wanted to estab-

lish whether bomblets from all three vendors, filled with two different materials,

achieved approximately the same degree of ovalness.

This is tantamount to determining whether three independent samples come

from the same population. Thus, we were able to state a hypothesis, evaluate

the two-sided test statistic, compare it with the tabled values, and determine

whether or not to reject the hypothesis. The data and analysis follow.

H0 : All three samples of bomblets achieve the same degree of ovalness.

HI: At least one sample of bomblets achieves a significantly different

degree of ovalness.
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The data (measurement of ovalness) are as follows:

Vendor . 0.002 0.010 0.036 0.004 0.006

0,038 0.023 0.003 0.013 0.002

0.013 0.010 0.013 0.008 0.007

Vendor I1 0.007 0.004 0.003 0.010 0.009

0.005 0.011 0.002 0.011 0.007
0.010 0.011 0.023 0.009 0.029

0.024 0.004 0.020 0.011 0.019

0.004 0.014 0.011 0.008 0.009
0.014 0.011 0.016 0.007 0.013

Vendor III 0.007 0.001 0.072 0.013 0.001

0.025 0.007 0.010 0.028 0.004

0.002 0.014 0.020 0.041 0.018

0.011 0.010 0.007 0.035 0.001

0.015 0.008 0.008 0.007 0.007

0.047 0.015 0.054 0.010 0.020

The test statistic takes on the value D(lS,30,30) m 0.2333. Quantiles of
D(1S530,30) are not tabulated, and so the computer program,which generated
the table was rerun to obtain exact values. The results showed that

P[D(1S, 30, 30) 4 .2] - 0.148915 and P[D(15, 30, 30) - .3] - 0.650568.

Therefore, the critical level a would be between 0.35 and 0.86.

The data do not suggest rejacting the null hypothesis at a moderate

significance level. Therefore, the experimenter concluded that the

three bomblet semples achieved approximately the same degree of ovalness.
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• I. Introduction.

- When data are scarce, it is common to combine small samples from a
number of sources considered to be reasonably similar. When sample sizes are
extremely small, testing the assumption of similarity of sources is often only
attempted by subjective means. This paper provides a method to add quantita-
tive risk assessments to the study of this assumption, using two observations
per sample.

In addition to general compatibility testing of the sources using
modified versions of Westenberg's Interquartile Range Test, and the Westenberg-Mood
Median Test, a new hypothesis test has been developed to aid in identi-
fying whether one (or more) of the sources of data provides a substantially
larger or smaller set of values due to its underlying population.

Because the probabilistic risk assessments provided here address a
situation so commonly found in analyzing military operations as well as in test
and evaluation, details are provided to simplify the implementation ol' this
methodology. A major goal here has been that power analyses be described in
terms meaningful to the user and the decision maker. The new hypothesis test
makes use of simulation-aided power analyses. -

The tests for general comparability, using modified Westenberg tests,
were first introduced in reference 2. The FORTRAN code for tnese tests Is
given here in Appendix I. This program involves straight forward binomial

* probabilities. The first format statement explains the variables and the null
and alternative hypotheses. It Is written in terms of the interquartile range
of the combined sample, but could easily be written in terms of being above or
below the median of the combined sample. The null hypothesis (H0 ) and the

alternative (H,) are repeated here. "H.: Each sample has at least 100 x RA
percent chance of having one observation inside and one observation outside the
interquartile range. Hl: Each sample has at least 100 x RB percent chance of

having both observations fall together either Inside or outside." The null
hypotheses for the Westenberg tests thus indicate a general compatibility among
the data sources. If a set of data made up of pairs of observations from a
number of sources a ppear to be reasonably homogeneous as judged by these tests,
however, it may stil be that one, or perhaps a few pairs of observations may
have been drawn from a source very different from the underlying population for
the majority of the pairs of observations. Therefore, a new test is needed due
to the inadequacy of the modified Westenberg tests to discorn such a situation.

In order to determine whether a pair of observations may have values
appreciably larger, or smaller than the other observations, the probability of
having both members of that pair of observations be among the largest, or
smallest in the combined sample should be Investigated. This is accomplished
here In the Length of Initial Run (LIR) Test. In this test, the larger value
in each pair of observations is labeled "A," while the smaller of the observA-'
tions from that source is labeled "B." If no pair of observations Is drawn

$
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from-an underlying population considerably different from the others (in
particular if no pair of observations is drawn from an underlying population
whose location is considerably larger, or smaller than the others) then the
length of the run of A's in the combined sample before the first B and the
length of the run of B's before the first A should not be too short. (Note
that run lengths can vary from one to n.)

II. Mathematical Theory of LIR Test.

Under the null hypothesis, that all pairs of observations were drawn
from the same or identical populations, the length of the initial run of A's is
identically distributed as the length of the initial run of B's. This discus-
sion will only be couched in terms of the initial run of A's.

The probability of having an "A" as the largest value in the combined
sample is unity. The probability of having an "A" In the second largest
position, under Ho, is the number of observations not included in the sample

pair that the first A came from (2n-2), divided by the total remaining number
of observations available (2n-i). The probability of having a third A in a row
is the previous probability multiplied by the number of observations not
included in either sample pair that the first two A's came from (2n-4), divided
by the total remaining number of observations available (2n-2). Therefore, the
probability (under H0 ) of having at least r of the A's before the first B is:

2n-2 2n-4 2n-6 2n-2r+2

Zn-1 2r-2 Zn-3 2n-r+1

If exactly r of the A's preceed the first B, the probability of this occurrence
(under Ho) is the above expression multiplied by the probability that the r+lth

largest value is a B. This would be the number of B values whose corruspondtin
A value is among the members of the initial run (r), divided by the total
remaining number of observations (2n-r). Simplifying, therefore, the probabil-
ity (under Ho) of having an initial run of length r is:

(2n-2)!!(Zn-r-1)!r , where kW! = k(k-2)(k-4) b to

(2n-2r)!!(2n-1)! (stopping at 2 if k is even, or 1 if k is odd).

This further simplifies to

(n-i)!2ni 1 (2n-r-i)!r .n0-1)l!.r-l (2n-r-!)!r

(nir)!2n-r (2n-I)! (n-r)! (2n-i)!

In general, if N Is the number of observations per sample and n is the number
of samples, then the probability of an initial run of length r Is:

(n-l)!Nr"I1 (Nn-r-1)1.(N-1)r

(n-r)! iNn-l)!
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Simulations could be used for alternative hypotheses and for irregular numbers
of observations. This paper, however, is concerned with N=2 observations per
sample.

Simulations (see Appendix III) were used to determine the relative
frequency distribution of initial run lengths under various alternative hypo-
theses. Each alternative studied assumed one pair of observations to be taken
from one underlying population and all others taken from a second underlying
population, with a few exceptions for sensitivity study purposes. The accuracy
of the simulations was examined in several manners. First, both underlying
popuirtions were set identical and the results compared to the frequency
distribution for the null hypothesis. Agreement here demonstrated that the
closed form solution for the null distribution is correct and also that the
simulation was accurate to approximately three significant digits using 20,000
repllcations for the cases of Interest shown in Appendix II, also under HO

Hot-ver, under any alternative hypothesis, accuracy of the simulation is
degraded due to the fact that the distributional forms which the pairs of
observations are being drawn from are not exactly what they have been repre-
sented to be. Table I, however, provides a set of chi-square "poorness" of fit
tests which show that, in the case investigated there, the distribution is
almost exactly as was represented. (Similar results were obtained using other
distributions.) Table II is used to demonstrate the small differences in
resulting output when inputs are varied to degrees that were found unlikely to
actually occur. (Note that the differences found in Table II were of only
approximately the same magnitude as in Table I.) From this, it is generally
concluded that only two significant digits should be used from the relative and
cumulative relative frequency outputs.

* In addition to thetype of validation shown above, the simulation
results were compared to a closed form solution for the probability of a run of
length one when one pair of observations is drawn 'from one distribution and 'all
others from a second distribution. In order for there to be a run of length
one, both observations from the same pair must be the two largest (or smallest)
observations in the combined sample. Therefore, if p is the probability of a
run of lengti, one, and we are investigating the initial run of A's, and only

* one pair of observattons is drawn from one distribution with all others drawn
from a second distribution,

p ~~()Ig 1, 2,(t)dtdx
9M- tox

+1 2 2 (x) f 1 (t)dtdx
W7.,- j ,2, ,^Mm-

xu-= tux
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TABLE Ia

Random Nos.
True Generated From A

N(12,1) VS N(12,1)

CELL # #OBS CELL# #OBS CELL# #OBS CELL# #OBS
1 370 26 410 51 417 76 405
2 375 27 428 52 402 77 403
3 402 28 382 53 398 78 405
4 369 29 413 54 381 79 360
5 412 30 386 55 447 80 361
6 376 31 400 56 385 81 393
7 407 32 396 57 393 62 388
8 424 33 426 58 .375 83 408
9 413 34 386 59 404 84 381

10 381 35 433 60 401 85 388
11 377 36 380 61 419 86 404
12 380 37 407 62 371 87 388
13 394 38 418 63 414 88 408
14 381 39 393 64 400 89 421
15 382 40 407 65 415 90 411
16 364 41 370 66 396 91 422
17 388 42 428 67 415 92 397
18 398 43 411 68 429 93 395
19 423 44 395 69 389 94 398
20 427 45 405 70 424 95 394
21 381 46 347 71 417 96 414
22 398 47 413 72 406 97 429
23 393 48 445 73 439 98 392
24 394, 49 415 74 404 99 420
25 370 50 392 75 392 100 417

THE CHI-SQUARE VALUE FOR A N(12,1)
USING 40000 GENERATED RANDOM NUMBERS

TESTED AGAINST A N(12,1)
IS 94.56
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TABLE Ib

' Random Nos.True Generated From A

N(12,1) VS N(12,O.95)

CELL 0 #OBS CELL# #OBS CELL# #OBS CELL# #OBS
1 2B2 26 385 51 449 76 437
.2 295 27. 426 52 415 77 390
3 317 28 430 53 418 78 349
4 344 29 403 54 402 79 387
5 343 30 424 55 468 80 410
6 372 31 409 56 395 81 394
7 361 32 424 57 426 82 399
8 380 33 424 58 385 83 393
9 390 34 409 59 435 84 392

10 402 35 433 60 417 85 389
11 378 36 417 61 444 86 401
12 362 37 412 62 387 .87 409
13 370 38 445 63- 413 88 406
14 396 39 424 64 454 89 394
15 382 40 403 65 399 90 414
16 383 41 426 66 439 91 375
17 362 42 401 67 435 92 368
18 369 43 458 68 416 93 382
19 412 44 399 69 .432 94 366
20 436 45 432 70 441 95 383
21. 438 46 387 71 424 96 366
22 385 47 418 72 451 97 367
23 388 48 460 73 418 98 335
24 416 49 442 74 398 99 354
25 396 50 415 75, 414 100 300

THE CHI-SQUARE VALUE FOR A N(12,0.95)
USING 40000 GENERATED RANDOM NUMBERS

TESTED AGAINST A N(12,1)
IS 302.45
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TABLE Ic

Random Nos.

True Generated From A
N(12,1) VS N(12,1.05)

CELL # #OBS CELL# #OBS CELL# #OBS CELL# #OBS
1 495 418 51 402 76 393
2 443 20 366 52 371 77 384
3 448 28 407 53 388 78 398
4 445 29 378 54 372 79 398
5 412 30 386 55 398 so 359
6 442. 31 367 56 396 81 342
7 444 32 427 57 366 82 385
8 428 33 356 58 372 83 401
9 399 34 423 59 370 84 392

10 395 35 362 60 383 85 380
11 396 36 386 61 387 86 398
12 399 37 423 62 400 87 396
13 378 38 385 63 358 88 402
14 384 39 162 64 368 89 422
1s 354 40 385 65 422 90 417
16 404 41 365 66 385 91 433
17 411 42 403 67 376 92 433
18 411 43 394 68 421 93 418
19 413 44 387 69 381 94 416
20 383 45 360 70 382 95 427
21 373 46 345 71 404 96 424
22 392 47 392 72 411 97 473
23 392 48 427 73 392 98 479
24 368 49 391 74 431 99 472
25 391 50 380 75 391 100 566

THE CHI-SQUARE VALUE FOR A N(12,1.05)
USING 40000 GENERATED RANDOM NUMBERS

TESTED AGAINST A N(12,1)
IS 277.28
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TABLE IIa

Input distributions are N(12.00, 1.00) and N(1O.O0, 1.00). Number of samples
from each distribution is 1 and 9 respectively. The random number seed for
this run is 65557.

.,Test for the Length Of the Initial Run of A's before the first B.

Humber of rep1lcetion•-20000

Length Observed Relative Cumulative
of R4n: Frequency: Frequency: Frequency:
1 7275 0.363750 0.363750
2 4391 0.219550 0.583300
3 2980 0.149000 0.732300
4 2123 0.106150 0.838450
5 1534 0.076700 0.915150
6 857 0.042850 0.958000
7 $17 0.025850 0.983850
a8 246 0.012300 0.996150
9 67 0.003350 0.999500

10 10 0.000500 1.000000
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TABLE lIb

Input distributions are N(12.00, 0.95) and N(10.00, 1.00). Number of samples
from each distribution is 1 and 9 respectively. The random number seed for
this run is 65557.

Test for the Length of the Initial Run of A's before the first B.

Number of replieatlOnk: 20000

Length Observed Relative Cumulative
of Run: Frequency: Fequency: Frequency:

1 7406 0.370300 0.370300
2 4480 0.224000 0.594300
3 3018 0.150900 0.745200
4 2134 0.106700 0.851900
5 1419 0.070950 0.922850
6 806 0.040300 0.963150
7 469 0.023450 0.986600
a 203 0.010150 0.996750
9 55 0.002750 0.999500

10 10 0.000500 1.000000

f,
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Q1

I TABLE IIc

Input distributions are N(12.00, 1.05) and N(10.00, 1.00). Number of samples
from each distribution is 1 and 9 respectively. The random twumber seed for
this run is 65557.

Test for the Length of the .d1tal Run of A's before the first B.

Number ofreplceations:20:

Length Observed Relative Cumulative
of Run: Frequency: Frequency: Frequency:
1 7141 0.367050 0.357050
2 4273 0.213650 0.570700
3 2969 0.148450 0.719150
4 2119 0.105950 0.825100
5 1611 0.080550 0.905650
6 958 0.047900 0.953550
7 556 0.027800 0.981350
8 284 0.014200 0.995550
9 78 0.003900 0,999450

10 11 0.000560 1.000000
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where g1,2,k(x) is the distribution of the k h order statistic out of 2

observations in distribution 1 (distribution 1 is, in general, the distribution
of larger location if the initial run of A's is being. investigated); and g2,m,k

is the distribution of the k th order statistic out of m for distribution 2.
Since there are n-1 pairs of observations taken from distribution 2, m = 2(n-1)
= 2n-2, and therefore:

M-1 2n-2-1 2n-3

The expression for p is based on the fact that if both observations of
a given pair have larger values than any other observation in the combined
sample, then the B value associated with the largest A has to be larger than
all other 2n-2 values.

Once again, use of this validation technique supported the conclusion

that two significant digits should be used in the results.

If f, (x) is the density function for distribution 1, and f2 (x) for.

distribution 2, an approximation can be made for p when the number of observa-
tions drawn from each distribution are equal, or nearly equal, and very small.
This approximation will be very poor unless the assumptions are enforced. In
general, however, the calculations are much easier than those in the previous
expression. In this case the approximation Is as follows:

f J f2(x) J fl(t)dtdx; o a */11-4)
x.w t x

p + 2n v$+nI-p •.Te2n-v,,(v.1)+Zn-7) o+ , 2+n~v),V+( v1

where v is the number of observations taken from tho first distribution.
Sis the probability that if one observation were drawn from each of the
two distributions, the observation from distribution 1 would have a larger
value, The approximation is therefore a weighted counting procedure which doe*'
not fully account for the shapes of the true distributions of interest.

The tables of Appendix II provide power information for a variety of
cases when the number of samples (of size two each) is 5, 10, 20, and SO.- The
alternative hypotheses could have more than two underlying distributions (up to
n) but two are sufficient to illustrate what'is being investigated here. The
Importance of this test is to determine the likelihood of having one (or
possibly more than one) pair of observations drawn from an underlying popula-
tion which Is substantially different from the underlying population from which
the rest of the observations were drawn.
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If sample sizes are large, it is possible to reject Ho when the truth

Is close enough to H0 for practical purposes, unless a specific H1 is used for
a power analysis. When sample sizes are small, as In the case here, one may
fall to reject Ho when the truth is not close to Ho. Power analyses would help
by completing the quantification of the problem. Without a power analysis, a
hypothesis test is only half completed. Null and alternative hypotheses work
Itn pairs analogously to confidence limits. In the present situation, a power
analysis is very Important due to the unconventional nature of the problem.
(It is Interesting to note that when the number of samples [of size two each]

* Increases, the power level at a given significance level remains apparently
* approximately constant [see Appendli x III.)

Thi's paper makes use of a much neglected application for simulation.
Simulation can be used as a check for a closed form solution when the develop-
ment of such a solution was subtle, in addition to handling situations where a
closed form solution Is difficult If not impossible.

III. Example,

Suppose that ten processes (or items of equipment, etc.) are to be
examined for a certain trait and that it is expected that they will all behave
similarly for that trait. Also, suppose that the expense involved in studying
those processes is great, or that for tome other practical reason, the number
of observations per process (item, scenario, etc.) must be kept extremely
small. If two observations each are used, a combined sample size of 20 is
obtained. Whether or not these. samples should be combined would then be open
to examination. in addition to any subJectivt arguments, the modified Westen-
berg tests and the LIR test should be'applied to assist in this examination.
Suppose (for use in the LIR test) that the larger value in each pair of obser-
vations is labelled "A," and the smaller values labelled "." Subscripts
"1"-"10" could be used to donote which process Is being represented. (This

* will be used in the modified Westenberg tests.) Suppoie that when the values
for each of these observations are ranked from largest to smallest, the follow-
ing result is obtained:

A68 A A2 A A4 A5 A6 Aia A3 IB2 A9 97 D4 B 1 B 0 93 B3 85

The number of:times that a par of observations are both found on the same sido
of the median, NZ, is 2. Also, the number of times that a pair of observations
are both found either inside or' outside the Interquartile range is NZu2, Table
III shows results taken from the program of Appendlx I, PA is the probability
levelof the test associated with Ho, and PS is the probability level associ-
ated with H1, An examination of this table shows that there is no good reason,
based on this ranked data and aside from subjective arguments, to conclude that
these samples should not be combined, but actually there is good reason to
conclude that such a combination is advisable. However, the LIR test can be
used to show that even though general compatibility appears evident, the
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TABLE III

.0 H.. EACH SAMPLE HAS AT LEAST 1O0wRAX CHAN'ICE OF HA,'1.'7,
ONE OBERVATION •NSZDE ANeD ONE OSEEi'.'A"%0PN OUTSI)E

THE 1NTERQUARTILE RANGE.

Ni: EACH SAMPLE HAS AT I.IAST IOOxRBX CHANCE OF HAYINOG
BOTH O8BERVATIONS FALL. TOOETHER
EITHER INSIDE OR OUT1ZDE

iNFUTV ARE:
NIP THE NUMBER OF BAMPLa'
SN, T'E NUMBER OF ZEROES
RA AND RD

THE NUMBER OF ZEROES IN THE NUMBER Oe* SAMPLES HHOEE TWO 0090EfVTaZOmU
ARE FOUND TOOETHER

ENTER NrNZRAiRLk10,2,0 *5.8*3,0.

PAO,221O2 PIN0,aI75
Do You wish to run the test amalni
Enter NY' or."N'.

ENTER' NBNZRAvBR'S
10 e20e0. 50t . 50
PA20.U1h , P-m0.175
Do you wish to run the tot amain?
Enter " .or t'N".
V

ENTER NSDNZ&RAPRB.
10.2P0.75,0.23
FAe,7127 - PBiO,9328
Of You wish to run the test amain?
Enter " Y" or "N.,
N
FORTRAN STOP
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S'initial run of A's is extremely short (one) and this indicates that sample 8
rriy provide values too large in comparison to the other values. The LIR test
shows that if the null hypothesis (that all pairs of observations were drawn
from the same underlying distribution) Ir. true, the probability of an initial
run of length one is 0.053 when the number of samples (n) is 10. This is the
probability of a Type I error. However, if the null hypothesis is "accepted"
here, the probability of a Type II error (for any alternative) is unity since
no anmount of evidence against Ho would then suffice. if the values of the
observations here suggest that graph A is the result of a reasonable alterna-
tive nypothesis, then the power against that alternative Is of interest and Is
approximately 0.56. Againmt the alternative used to arrive at graph R, the
power Is 0.36, and the power from graph C would be 0.12. Note,Lhowever, that
tho alternative shown here igainst which the power is lowest is for a situation
better' investigated by the tosts of Appendix I, program WC, originally found in
reference 2. Note also that even if all-20 Observations here came from the
same ,distribution, that is a small sample to use to determine the form of that
distriution. T~erafore, other alternatives involving distributional forms
other than normality may be needed to com'plete the analysis.

Suppose a8 and A7 were not as shown, but exchanged In position. The values

of NZ would remain the same, but the lingth of the Initial run of A's would now
bo two. If Hi as reected when the observed run length Is 2, the probability

of a Type I error is 0.158. Against the first, second, and third &Iternatives
mentioned above, the probability of a )ype II error woulc be 0,44, 0.64, and
0.88, respectively, and the power would be 0.76, U.58, and 0.34, also
respectively.

If a run of length 3 is considered, these *igilres are, respective to the
order given above, 0.307, 0.24, 0.42, 0,66, 0.87, 0.73, and 0.62.

Considering the above, when n=iO it could bo deemed reasonable to
reJect Ho when the run leng-th is 2 or le.•, and "accept" it when it is 3 or

more.

In conclusion, if some of the obser\gtions in the example given earlier
are shifted in rank It may affect one or more cr perhaps none of these tests.
Also, if the modified Westenberg tests greatly discourage the combining of the
sAmples, then the LIR test ,ill probably not be very useful. In using the'
modified Westenberg tests, if it is not rossible to divide thq observations
Into groups of equal size (.above and below the median and inside and outside of
the interquartile range), tihen apply the tests shifting the obserý,.t"on(s)
which are in question from one possible grouping to the other and average the
results obtained. Finally, because the Bernoulli trials In the modified
Westenberg tests used here are not truly independent, these tests are
approximate. Also, some RA and RB values may be inappropriate. For example,
in Table III, RA could never be 0.95; however, it is u3ed to illustrate the
strong conclusiveness of these particular results. A study of the null
hypothesis indicates that for RA= 0.5, the binomial distribution used for this
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.,test has thicker "tails" than warranted. (The exact null distribution is
S ,.described by

.(....!•J/ 2 ••Z) .
(2NS)W2N [(NZ/2)!]2

Also, the true null distribution is skewed to the right, but not appreciably
when NS exeaods 50. For smaller numbers of samples, WB 1 from reference 2 Is
of usti The advantages inusing program WC are that understandable
alternative hypotheses can be shown for decision making, and a large number of
samplepairs can be'handled with very little computer time. All that Is really
needed isia table of the cumulative bitnomial distribution. This test should be
considered "quick and dirty" as a preliminary to the implementation of the LIR
test. The LIR test'is an exact test and is easily and meaningfully applied.

I.4
II
44

Ii.

*. . *



APPENDIX I

FORTRAN CODE FOR Modified Westenberg Test
(Designed for n pairs of observltions)

This program was referred to as "WC" in reference 2. Not* tha.C unlike the
other modified Westenberg tests of reference 2, which are exact, this one is an
approximate tost.
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APPENDIX II

POWER TABLES FOR LIR TEST

The distributions from which the input is to be drawn for each of the
alternative hypotheses are shown here followed by histograms of the relative
frequency distributions for these alternatives. In all cases here, both of the
distributions from which the samples are drawn are of the same.type but with
"parameters which differ in sea respect. The samples could have been drawn
from totally different distributional forms, and more than two such distribu-
tions could have been used (up to n); however, what is used here is sufficient
to demonstuate this test under conditions whtch illustrate its usefulness.

'In the case'of the normal distribution, when standard deviations are the
same, the symmetric, nature makes the relative frequency distribution for the
initial runof A's the same as that for the initial run of B's, if the number
of pairs of observations from each of the two input distributions is inter-
changed. This Is true in all cases where symmetric input distributions of
equal variance areused. Also, when two symmetric input distributions with the
same location, but unequal variances are used, this principle applies. When-
ever this occurs, the output relative frequency distributions here are written
In terms of the initial run of A's.

The Church-Harris-Downton (C-H-D) method of testing the probability of
motor case rupture In missile testing, see reference'l, makes use of a statis-
tic related to * (shown in Section II here). This statistic is
(#I-- P2)/(12 2)1/2, where the subscripts "'1" and "2" refer to the two
input distributions. For any of the tables involving two normal distributions,
if 4J1 , AZ' C1, and (r are changed such that the above statistic remains con-
"stant, then the output relative frequ!ency distributions given here are appli-
cable..

* In the case of the gamma Input distributions, whenever the O's (scale
parameters) are both multiplied by the same factor, the output distributions
are still applicable. For triangular input distributions, if all parameters
are added to, subtracted from, divided or multiplied by -the same number, the
"output distributions'will not be changed.

- - Thetables given here are for two normal distributions, two gamma distri-
'butions, two triangular distributions and finally, two beta distributions. The
parameters were picked, in many cases, such that the power against the alter-
native was approximately 0.5 when the significance level was approximately 0.1
to, 0.15, This occurs for Ho, as shown in the following table:
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i# of samples run length (probability level
of size 2 each under H under He)

5 1 -110 2-'15
20 3 -15%
50 4 -10%

5 -5

SThe following tables provide a variety of examples of alternative hypothe-ses and results obtained using them. It is hoped that this appendix issufficient to provide a working knowledge of the power of this test to itsUsers. When any specific alternative which the user is interested in investi-gating does not appear here, and the user does not wish to spend the time to"get the programs of Appendix III to run at a convenient facility, it is hopedthat the results can be Interpolated from results provided here. Note thatfollowing each graph of the distributions from which the observations arehypothesized (H1 ) to have been drawn, only relative frequency distributions are
Srovtded. The hollow bar graphs show the relative frequency distribution under
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As stated in the Introduction to this paper, if "A" is the larger value and
""" is the smaller value of one pair of observations, then the probability for
the Length of Initial Run (LIR) of "A"'s or the probability for the LIR of
"B"'s can be used to indicate whether data has been drawn from the same
distribution or from two different distributions.

In most cases, determining the probability of a LIR equal to N (where
N=1,2,3,...) is Impractical using analytical methods.

The purpose of this pr~gram is to use simulation to estimate the prob'bil-
ity of observing a LIR equal to N for an alternative hypothesis that assumes
data has been drawn from two different distributions rather than the same
distribution (as the null hypothesis assumes).
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LisT oF VARlAoLES

Variables usea in Subprogram lKfI1AL1AL

IDIST: Value pdetermined by input, whicta specifies the probability
distrioution.

IRKPI Input value tor the total number ot replications to be per-
tformed.

NIt'LEz Logical unit assignment based on Input value,

NAMES Name of output file (when NwFIL•U),

-D1PI Disposition of output tile at termination ot program (when

ITEMS Value (A or 8) designatinyi the t~pe of run test to oe pertormeo

Ll'TER: Specifies the type ot probability aistrioutiong N-normalp
G-qemm'a H-betap or 1-triangular,

Variables usea in subprogram SURT

SUMSa '1he total number Ot sefples drawn (N5A60(1)÷i\lAMF(2)),

AkUIqI Length of tne initial run of 'A's before the first OB0.

8HUNI Length oa the Initial run of '8's before the first 'A*.

AH•bULT(SUM)I Array wnich stores tiie numoer of times each 'ARUiNO
lengtri occurs during the entire simulation,

BRESULT(SUA4) Array wnicn stores the nuoer of times eacn "bIlxUN'
lengtn occurs during the entire sImulation.

Variables used in subprogram REPORT

PEHCk;NT(SUm)1 Relative frequency destribution of the LIN
(ARjEBujj'(3U,M)/IjiEP; B E uO (SUM) /IRý,P) ,

CUmCSiM)I Cumulative frequency distribution of tre LIR,

ANSW5HX Input value which aetermines the status of bar graph
output ot frequency distribution (printi¥S or NUt),

Vdriacles useo in suburograr i4UPAL,

MU(I)$ mean for distrioution 1.
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£LGMACI)i Standard deviation for distrioution I.

XI An Independent Identically distributed uniform

random number generated by the VAX 11/7O subprogram 'RANO.

Ta (2X-1)a A test value to determine acceptability of the
generated random numbers.

Y3 N-CO1l).

XIOX21 N-(NUO61GMA)Ps.'

Variables used in subprogram GAMMA

ADPHACI) 1l.14: Shape parameter,

5£TACZ) 1o1,2t Scale parameter.

Ru An Independent Identically distributed Uniiori
random numaer generated oy the VAX 11/760 subprogram 'HRA',

TICT & wu Test values used to determine acceptaollity
ot the venerated rAndom numbers.I Ti GAM"CAO~NACZ)s1) 1.1,2.

X(l) 181038 GAM-CAbPHA(1)OBeTA(I)).

Variables USed In subprogram bK'TA

ALPHACI#J) 1pJ,1,23 Shape parameters.

RP An Independent Identically distributed uniform
random number generated by the VAX 11/7?0 suoproqram °NANS°

UST & i Toest values used to determine acceptdbllity

Of the generated random numbers@

Y1 GAM'(AbPHA(1),i) 1.1,2.

X1(Z) 1u1,21 GAM'(AbPHAC),1)oW I112.

X2C1) ei,21 dETOCAbPfjPA(Z)AAbPHACJ)) 1eJXIe2,

Variables used In subprogram THIANG

Go Minimum value. bocation parameter.

H8 Maximum value. 4ax-minwmcele parameter.

Cu Mode. Shape parameter.

R1 An Independent Identically distributea unitorm
random number generated oy the VAX 11/760 subproyram '°A,v'.
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X X2xJA TkiANGC(Ol,(mode-min)/(max-min)).

X(I) Lzu,2t TRIANG(minmaxmode).

VdrAibles common to sunprograms

NSAPP(I) Izl,4: Tme number of two-observation samples
required for dlstribution I.

ACSUM) 6UM1L-1•,8At(1)+NeANF(2)1 Array ot greater values ot
each two-obbervation sample from the combined NSAMP'S,

b(SUM) SUMujpNSAhP(1)NSA•I(2)8 Array ot lesser values ot
each two-observation sample trom tne comoIned NbAmP'b,

CUNT: Counter for current number of replicationst slmgle-
tion terminates Wnen COUNTNIRKP,

11: initial vAlue required for ranuao number generation,

PKUGKAN LMITAT.LOi

Subprogram TRIANGS The Mode 'C' Used to generate the
TRIANG(O,1,C), Where Cu(mode-min)/(max-min)# is restricted

.4 to U(C(1.

Subprogram •AMMAt ALPHA>l,

Subprogram d'TA: A6PhACi 1 J)>i l1.,2.

Input distribution$ must both ,Qe o the same type,

Input distributlon type is limited to normal1 gamma, beta,
or triangular.

Tne number ot replications must be less than or equal to 100,p0o,
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*9*~**9******ip999~*A~l~PROGRAM 0 0 $0 $0*.*e..~uj**taj

* . ~COMMON/AL.G/AC5O) ,BCSO) ,UM

COMMON/UUT/ARESULT(S0) ,SRgSULTCSO),PERCtNTC5O)
.COMMON /FILE/NAME pDI SP- .-

CALL I NITIALIZE(DIST)
1.9..~ 3P4,pDST._

I 'CALL NORMAL
GOTUO 10... _____

2 CALL GAMIMA
COTO .10

3 CALL SETA
... .CObO 10.

4 CALL TRIANG....-. .

1A0 CALL R~EPORT __________

$TOP

*Tnis subroutine Inputs the type of probabiLity 0

SU.DROUTNN INITIALIZZ(DIAT)

COMMON/FILEINANID5F~

CHARACTER*13 NAI4EtOPU
31 TEC.ko 31 )~ .___.............___ ____.

31 FORMATCU,#0utput may be written to a f110 a~d then printed___________

1 0 tr termlnal,O)

ELSL 1FCCHOICm.IQ.'TO)THEN

GOTO 3

GOO35

WAITE,(6012) __________

7! READCS,17)NA141

WH!TE (6,21)

/*/T2,1Typei KIEEP,PRINTpor PRINT/0ELTTI.)

27 roRMAT(A)

3 WIAIlEC6, 72)
72 ruRMAr(2,'0hi~h tyPe of test it. Ut.. ba-Si.r.1 Moll41~1...
/'Cnter "ARUN" 1f you wisM to'know the length of9 the A '

................ *run belor* the first t.$u'Rnter .~RJ~iyna.xah..h~...
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-, / *lonrtn of the 0I run before the first A,'p/pTZEnter "BOTHOP
/*it YOU WOU10. like the results of both texts.*)

79 *UI4MAT(A)

ELSE 1F(TP;,T.EQ.'hHUN')THEN

ELSEk 1F(T~b6l'.k.UU¶Ik)1HEM

E Lis E
GM't 3

LuD! IF'

10 FURAAT(Uo'belect trio tyPe o2 distribution you would
i# *llxe,,/,` Type tne first letter of t~he name to MAte '

1/ your ILnputP)
ALAIVCb023)LhLTTCHh

23 FORM'ATCA)
z ctoC ,T L K* E N')T 11F. N
DISTaI

DXI3Tx3

U)1578U4

(GOlC ii

93 FOAr4AtCT2,'nter the number of replications 9

' to be ;ortormed.')
91 RLhADC5,*)INEP

£MPE.PLIGTeiOVO0u)GUTiJ 92

SNU

* Tiils suoroutine qenerates random numbers *
4 tronm tho normael distributions

8VBIKOU~itJC NORJMAU)
DIMNNSIQ% VC2) ,MU(2) ,8lGMAC2)sN5~AM&'(2)
CUMh4Q:4/ALG(./AC.%O) g H(b)) SUM

CHARACTSH*13 NAME4p)1SP
PErAL. MU

PRINT 5
b ruRImAT(1XP*Fnter mut, siqma anro number of uampiesa,

/ f or tiep/pT2,
/ first nruomal distribt~vtoi separ~ted oy commasq,)
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WNZTECG,17)
rQFR14AT,CT2#,'nter mu,. sigma and number of samples"@
0 gar' the',/oT2e

_i_ _'..L!As c nd. narmal distribution separated by COMMas8.')
RIAD(b,*)NUC2),5ZCMA(2) ,NIAMP(2)

19 rOPMATC2,Egnter a five-ndigit number for random',

...3.. J'RMATC 72 it! nput.A .istr LatouOnos are N(Ug,,,P.,)and',
/*NOC',r5..2,','u'5.2,').',/,?3,'fhumber at samples from each '

~ ..!A&5.IrIU~on ...I Lk. %12. ..a.n..d........
V 1 2,0 respectlvely.,0/,t2,The random number 8e6d *0or this '

97 COUNSCOUNT+1

DOA910 TO 901,

)?28-2MIT/T

IF(XIG?.X2)THN9

P(IUM)RE2

ACIU?4)wX2

-~..IZLM.LT. AMPCJ6)GO.-T09
ZFCJ.LTe2)GO TO 100
C.LLL. 609T... -

irCCOUNT.0T.ZRP)GOTO 97

END

* This subroutine generates random numbers *
Iro.m..tj4.. gamma distributIon. ,

N.UBH4OUTINE GAMMA,
01ACN6.04 U(2),XC2),AykjjAC2),BITA(2),N8Af4PC3)

9a

.~ . . .~ .... ..... . * 4 f
9 ~ ~ t

1
*' * . 4



CUMIJ0/A1(/A(50),h(50),gIJM

CUM ANALINF 1 # t kAt4#.,0.ZSP

JTEGI~k CUUNTpiL,8UM
HEAL. L.TIITA,,LNZ

6 PRINT 10
10 FUmATC1Xp0I~nter alpriao beta anci number at samples tar##

* first. gaftmo uistribUtion separated by commase')

6 PRIN'T 11
12 FURAT(1K,'~nter alphal beta and number ot samples tore,

* second Qnune distribution separated by Comainna.)
HEAOCb,*)ALPHAC2),b:AC2),NLAMP('J)

PN1NT 12
12 FQ'AL'('A2v'Wnter Ai tive-digit numlber for random"#

I nu'noor generation.')

W k1 -rkC NF-IXLke $ ) ALJPHA C1 I 1)T C ALPHA( 2) UE~TA C 2) , tSAMP C I)

Ob FOHReA'(T'J,'lfPUt distributions are G'P.,'b52')and',
/ GC~o.F5.2,~','bb2,'),',./pT2.'N~iber af samples tram
$ each distribution is '.12p' and-#

/12.' respectivelye',/,T2,'The random nuinoer seed for this Pp
/ rUn is 'It~ho,O)
THELTAn4eb
IP~k..TA2LUG(4sb)

oleu1.LT1HEIA

97 CUUw~TwCUUb'?e1

60 SN
G~o2,*ALPflA(K)u1*
G2abORT(LM)

20 juJ+1
50 V'(. JO 1n1#2

PORAN( 1:1

Vo.C*V2
v 1u2ýxpc V)

T~ ES I~ xi% Alj i OE * Z

99
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* LNZELOWGte1Z)G TO 40..............,-..
GU TO 50

40XWW)AC5TACK)
1FCJL~T.2)GO TO 20.
5UMNSUS+11

S ((1U)s aX(2 ))Tc

* . (A(UM)wX(1)

SC SUN aX C2)

ZFCOL?,2)GO To *0

ZF(CCUNT.L0sZH9P)OTO 97

END

* . * , ~This sukroutino. gevnera~teur.sai-k.r..... .
* ~from the bete diltrlbutLong

IUIROUT.INS BLTA .,...,...

DIMENIZON X1(2),X2C2) ,UC2),ALPHAC2,2),NIAMPC2)

COMMDON/AL41NZLACIft),SCITEMW&
COMMON/ALL'SWNAMSE, 01REP...T
CiIANACTWRO13 NAM4eDIAP

INTbWGCN CUUNTri1,NPOISURI.. -.--.-..-

ZTCNTLLE.Q.)oTO 3
OF tN C I vlr IPtoN A M 9 42A T.V US VO.uD IIFP PO)

3 PRINT 10
10 .VORMA-TC1XOPntor alpha$.# .410We.en..nme Z IfDR

I 'for theop/,T21
5% , / 'I firat beta. di OtrlI btl@, uep.a,restod-.yCSAL!....S.......

R.AL)Cb,*)ALPHACI,1),ALPNAC2,1),NSAMPCI)

11 fORMATCIXWinter aiphall alpha2 and number of samples

"I secohd beta distrIbUtion separated by commase')
Pk.AP(bo ý.)ALIPHA.(I #2) .AUNJA-Ut.2) .SMC.... . .. -.

PNINT, 1'
12. rophAT(12,'Inter a fivo-dgLt ......~gQ rno'.............

/ umbet generation.')

WHIZThCNPZLE,9S)ALPNA~ilo) ,ALPHACZ,1) ,AbPHA(1,2),ALPNA(2o2)p
IN5AMPC$)vNSAM1F(3)Zil.-...............*.. .

go F0PAT(T2r0ZMPUt distributions are B"U(F5,T2#,e,,Y5*2p) andge
1 ocor5.o,'..'r5o2,').'soT2,'Number of samples. from.0o
0 SaCh distribution Le '.12,' and ',

Age~ respvctively*0o/.A.IL'The random nwT'bot see~d..for-this '
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'run is 00"0'.1)

LJTf0IAmuLL)( 4,5)

97 COUTEaC1UUNT41
ONO
SU(A. 0

90 NEi~1,2

DO 4i0 Mwu1,isAMpCt42

00 70 Lmiv2
DO hO Kulv2

G20-%(OHTC G1
Gal./62
(i3AtPhA (K oN) +G2
HNALPHA(KoN.)-F0UP

50 DO) 40 1.1,2

3U Cu1a) qu

VlauUCil)/.-UcI) )

VuG+(*VmZ

lr*CT~hT.G1..0)GU 'EU 40

lF(waGFLNZ)GU TU 40
GO TOQ 5u

40 XI(K)MY
60 CUNTI'NU6.

X'4(L)KXIL(l)/CX1C 1)+X1C2))
70 C~jjjU

R(SUM)uX2C2)

ACDUIA)RX2(2)

P., 1ND IL r

90 C 1 1,I I NU L
CALLU dCiHT
IP*(CflUv'L.L'E.jkcp)GU'WU 9 .

L4I'

* This subroutine genierates random numbers*
f row the triatrwular distributIon.

i0.



SUBROUTINE TRI1ANG

COMMON/ALO/AC50) ,BC50) SUM
... .. ~....COMMON/AbL/NFZLEERPO,ITEM

COMMO0N/Flbg/NAMCIDISP
.CHARACTER11113 NAMEeDISP
INTEGER CQUNTpI,8UM

___ _ fU~fl............ -... . ....... ........ .

IFCNFILEeEG.6)GOU g

9 PRINT 50
S~fDt4A~EC1,~Kterminimum# maximum, mode and number og '

/ 09o sanplev from th@0,/,T2p
- ' 2!L~jt.uttrian~guiar.distr.ibUtion separated by. aofmas,,,

READC5, *)GC 1) ,NI) ,CC 1) ,NAAMPCI)

.51 FORMAT~lX4Enter minimum, maximum# mode and number of '

/'second trlanquler distribution separated by comnias,'O)

IFCGCI),GT.HC1).0H.GCI)aGToC(i).OkCC1),GTgHC1))THEN

7 FObtMATCT2t'INCORRECT PARAMETERS ON DISTRIBUTION,v
..L....!TI -- TRY.. AAIN a "J...................

41OTO 9

WRITEC(67)

CLOSE

52 FOIMATCT24'Entor a give-digit number for random nUmber',

RCAO(5o*)Il

WRITE(NrLI,9I)G(1),HC1),CC1),G(2),NC2),CC2),N5AMPCI)p

98 roRMATCT2p'Input distributions ares,

~L~.T.,.'4.nber o. s~epie..foneach distribution. is.',*.
: 2p" and '4l2,' reupectivelye',

L1,.za.The ...ranam. ýnumber. otod I.or this run i.,6''.
97 COUNTnCOUNT1l

DO 10 1.1,2

...... XLECQMPI*Ci,-U

X2nSQRTCXI)
~... Xu1.-X2102-



- ~ . NCJ3aG(I)+T*Xi

10 CONTIN~UE

93 C BM)=X(2)

'A EL~SE
A (SUM) X C 2)

ENDIF
20 CONTINUE
30 CONTINUE~

CALLI 6'JHI
* IVCCOUMT.LT.XHEP)G0Tw 97

RE~TURN
END

* ~This subroutine Performs a bubble sort,

SUBRO0UTINE SORT
DIM~NL46N AA(2),~b4(2)
CUMMO0i/ALG/A(50) ,BC5o) SUMi

CMMIOIN/ALIj/NFILJ~p HE~pITEM

CUMM(Th/P'ILAE/NAM~ pD18P
ChiAkACThLR*13 INAMEOISP
INCRH ARUN,BRUt.pSIUM

S..12 1 NTCHAm I
DO Lul,(SM-1)
iF(Al)@GaAI+.A)W0TU 25
AA(2)=A(1)
AA(1)mA(I+1)
A(1)iAAM2
A(I41)NAA(2)
I NTEHAU

25 CON~TINUE
END DO

A . IF(lNrT:PA9E~mQ)G0TU 12

27 :NT~iNUE

DO J2i,(SUJ4"

ALr(()148ARUN 1)Gu~ 2
102) 3 CJ



51 GUTO 7

END D0
7 CONTINUE

DO3 lSSUMPiP,1

GUTO 19

EI3F~
END Do

Is CONTZNUiC

S End of replication booklcoopingo 0
* This. part Of the .uU0roUt.1ne -storl&a.
* the statistic NI of runs. of length 0

*. X" In. the ary.ELC)...

Do laiSUD4
IF (ARON.E.AR5.L~~uRauT1)t ....

!Q irc80UN.EQ.Z)5RI~BULT(I)w8RXSULT MI)*

E~ND I

/ ' 'u bfore t he fist mulation

CHRCTR1 NAEp-P ANSWE.R_--.-......

INTEGER SNUML 2

43 cep L'NAMpSTT ,~Ob56rV9.4 '.,4.X.

.................. ...........................................
* ~ ~ ~ ASG 37 TO~ Id'OUT .*.



. R Il t IV 6~atv ,4Xp'Cumulatlv*')
WRITECNFILEp44)

-.44.. FORMAT(T2,ot Rui#X'reunvX
* ./ rr~quancyj'p4Xj0Frsqusncyo')

TmIREP
CUI4CO)MOO

PbERCENT(I)mARESULTCMt/T

KIND DO
. 9 Io zI#DUN

-... NTCZ)wAR9SUI6TCI)
....WRZTS(NFrzbE.17) It N?(1),pPERCENTC 1)$cum cl)

17 roAMATCT2.23,?12,16,T20,rs.,GT429 ra.6)

WFRITtCNFILIS2
61.PRM4ATC?2#/p/#/#/)

CALL GRAPH
.............. FCZTEMoEQ.1)GOTO 57

ELSE
.WRITEICNFrILE,42)

S-.WRITLOVILE,44

*1 CUMCO)md.O

PERCZNTCZ)m9R93ULTCI)/T
CUM(,I)wCUMCImW+PLRCEt4T(Z)

END DO
SDO Ilolum

XNTCZ).5ESULIC1)
...~u....WRI(gNrLE.17)Z,1NTCI).,PERCENTCZ~,CUMCL)

END DO
S~WRITECMFILE.62)

CALL GRAPH
*1~ 67 END IFr

5, CONTINUE

END

.. .... Th3.l...i~.ubaltunl ge9neraites theg relatLv.e and
* ciumulat~ve grequericy dtatribation

I . .~ tunction groaph.

DIMNSIONTESTI (SO) CUMC50.)
COMI4ON/ALG/AC5O~v8C5O)p5UM
COMMON/AbL/NFILEIR9PITEI4
COMMON/OUT/ARL5ULT(50),HRE5ULTC5O),ppRCENTC50)

CHAR4ACTER*13 NAME,DISiaAN86bLR
...............NT9GER SUM

1TC14FILkE.EO.6)GiTO 13,DSDIP
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I I iFC1'CfN.EQ.2)THEN
AS516N 99 TO bi

ASS16N 84 TO M

ACSSIN9LOL
ASSIGN 86 TO L
ASSIGN 86 TO K

ENDU if.

90 rORMATCT2D'I'or this test of the iongth ot tlhe run av4.--
I A''s before the first 6#',/,T2p

/'do YOU Wish a oar graph of the relative Anev.
/ cumulative frequency distributions?',/,T2
/ 'Enter "YES" or "NO"@')

99 PCJRMATCT20'For this test of the length of the run of',
I 60"s before the first A,',/MTv * - ..

/'do you wish a bar graph ot the relative and'
/ cumulative. frequency dlstrlbut19ns?0,/tT2.#

'Enrter "YE~S" or "NOR,#)
H&AVC5#91)AN3WER

91 FORMATCA)
IFCANSWCW,EQG.' FNO)~TU 89 .. . .....

WHCENFLIk~,27)
27 FUHMATC11')

WH I1i (NFA'I LC kK)
00 FOHR'ATCT5*'Relativ4 frequency graph',.....

I for the Length of the Initial Run Otto
I All* before the first Be.%/) . . ....-..-.

as FuRA¶ACTb,'Relative frequency graph',
0 foar t he Lean gt h o f thea I n It 14 R Un. og t..
/ *Bl's before the first A.,0/)
wI T E CN FIL I o3 7) . . . -...

37 FORMAT(T5,'0.O0',TIOo, ',4',T14, .O8',TlS, %13',?22t,1lG'

.31 wRxTE(NriLE03W ...

DU 1, SUM
TI6TlCl)m(PSIACENT(1)h.005)*i0O0.4.. .. .

IFCJE~o0JTI4EN.
A63IGN 43 TU WOUT

ASSIGN 41 TO IOUT

WRIT9EmilU,1OUT)ZPCRCLNT(I1 .-... .
41 FOwMAT('0',T3,12,TS, '-',<J>CIH+,2XFS.3)
43 FRoMAT('0,oT3,12,T6,'-',2XF6.3)

END DO
WRITE C N PIL £27)
A !RIT F: CN 1 ILC, )

112 Q~kAA(T5,'CUrnU1atiV6 frequency graPh',
I for the Length ot the Initial Run Otto
P AO's before the tu~~'/
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34 . FOMA:(T5.CUmUlatiVe frequency graph*,
/'tar the Length ot tn@ Initial Run at',

* .J ,.B.3 ~tO~tthe tirnt As',/)
WRIILCNFlbL,37)
WRI2TECNFILi.33)
DO Im1,$UM

.. .5TETCL)P(CU1MCZ)4.OO5)*1OOO.
JoTEA?1I)/110

.......... ... P.ICJ a9 .Q0) THEN
ASI8GN 43 TO IOUT

................ABBIGN 41 TO IOUT

... .. .. .. WRjTE(NFIb~I.~ OUT) 1 CUMCI)
5..., D

WRIEcNrILE,27)
89.. CONTINUE

RETURNi
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ADDENDUM
After listening to the presentation of this paper, Dr. W. J. Conover of TexasTech, commented that perhaps a rank test based on the rank sum of the A's or

some other appropriate measure might be used as a more powerful test of overall
compatibility among the samples with emphasis on shift of location. In view of
the weakness of the modified Westenberg test for the median which is given
here, and the generally high power of rank tests, this suggestion seems
promising. I would still, however, suggest the LIR test for the purpose for
which it is Intended: It emphasizes the improvement which can be obtained by
exclusion of a particular sample. However, beware of repeated deletions. The
probability levels of the test change step-wise with each application.
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IN-IMlEFIEL MECrIVWM WSS ?EAS FOR BIFAOHINU VMIICLE

Systems Employment Branch, Counternin Laboratory
US Arm 1tbility Equipment Research and Development Command'Jm Fort Belvoir,, Virgi•niaL

5A developmnt of' realistic models is required to assess the nfilital-y worth

of oaixitermine systems in mine warfare scenarios. Explicit closed form solutions

Sdelineating cout terrdne equ±pment effectiveness are being developed to becone

modular omporaints of a more complex war, e modelling' mine warfare.

Ths report develops a closed solution to measure the effectiveness of

azi,'red vehicles proceeding thrmou cleared lanes. An e tuation is derived to

determine the expected number of mines a vehicle will encounter in a scenario.

frTe expected rnter of mine encounters is used to calculate a meature to

OWan the value of changes in tactical methods and countermine materielt

A discussion of the applicability of the effectiveness measure to support

mine and countennine studies is also presented. A set of mine warfare situations

are bormulated as an example of the ease of using the expression derived in

SI*AMCKIOND

In June 1980, USAES requested ?EADCCt4 to perform analyses determining

what maidng system could be used with mine-clearing rollers. MERADCOM tasked

IE.L who, in turn, subcontracted A ann Systems, Inc. and the final report,

"An Znvestipation of Requirerents for Cleared-Lane Marking Systems (CLAMS) for

Hasty Breaching of Minefields with Mine-Clearing Rollers," was completed in

March 1981. Section .5.0 of this report, "Assessment of trhe Problems Associated

with Traversing and Marking a Minefield," thoroughly discusses doctrine)

literature and field test data.and repOrts on requirements of the width of

a cleared lane. 1 .e requirements established in sources such as FM 90-7

"%b'stacles" (which states a 4 meter wide vehicle assault lane may be used for
109
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the hasty breach), and, the final report by the USA Armor and i•ngineering Board

of 0E 11 testing of the Mine-ClearinG Roller (that notes the width of the lane

cleared by one tank with a roller is Inadequate to allow safe tracking by

other tanks and personnel carriers), are not driven by , or directly related

to, mobility mission requirements or effectiveness. Saoe procedure is necessary

to aid translating mission requirements 'into equipment performance reqtdre•.nts

and the converse. With the expression developed here, postulated systems

perfornmce Munctions can generate values of in-minefield effectiveness as

the measure of the expected number of mines a vehicle will encounter.

MI OBJECM AND SCOPE

The objective of this report is to derive an equatlori to calculate expected

mine encounters of vehicles crossing a minefield, and describe metriods in

omputing and applications of results of the equation to determine in-minefield

effectiveness (DE) measures of various systems.

The matheuatical scope of the dertvation extends to an integral calculus

Statement:

f(density function) d(AMA) w units (1)
AIMA

For the applicaticn here, this translates to: the integral of the density

fmuction in mines per aquare meter over the are' swept out by a vehicle passing

through a minefield is equal bo the number of mines the vehicle will encounter.

This iuld be exactly true if mines were a continuous phenomenon. But since

they are poin located, orat best disjoint, this equation is in approximation

to the expected ntunber of mine encounters. This method does not calculate

where a vehicle will encounter a mine, only the expected number of encounters

that are found in the area used in the calculation. This expected value is

the identical concept to the average, or mean value.
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Actual mine location will vary under a host of conditions (mine laying

procedure, minefield layout, etc.), so there is a possiblity that, though the

expected value of encounters in an intended path is positive, actually transversir~g

the minefield will-result in no mine. encounters.

Under rather standard assumptions of randomness,'the occurrance of mine

encounters can be treated as a Poisson process. Arguements to independent and

identical'distributions are not very serious because, firstly, the calculation

derived is an approximation, and secondly, the performance measure relates

* to the probability of no occurances, so the memoryless criteria of such a

process is robust. According to a Poinson distribution, the probability of n

"occurances, Pr(n), given that the expected number of occurances is N, is given

I: by equation 2.

Pr(n) n (2)

The probability of encountering no mines (nnO) given the expected number of

encounters, X, to be E(N) is

Pr(O mines) x e-E(N) (3)

This probability is the in-minefield effectiveness measure.

1i1



Included in the ME1 equatiol .derive'd within As a pa.wamereed

flunction that describes the venicle path and a probability distributi•cn .uncr•.on

of ,iandom play about the path. The resulting product of \iunctions provides a

t'lexibility in the quantifiable descr.iption of countermining situations. M'oreover,

the results are lmdlately and inexpensivly obtained compared to sLmu1ations

and war gmes of similar scope.

IV 130MATION

Lot O(x,y) be the minefield density funotion over some Carueslan coordinate

systlem; typical units for such a function are mines per motor squared *2M)

TW1., for example, a situation at FIO 1. In this example, a nmiohanically

eMilaced minefield or 3 rows of pressure AT mines with an inter-mine spacing of

four'maters'would require 300 mines. Since the area or this minefield is 20,000

square meters, the overall density of the minefleld is 0.015Md 2 . An saternate

representation of this minefield ooula partition tne mine rows into separate

mineflelds. Using tne variables defined in the figure, the expected number of

Amines, E(N), a vehicle would encounter is 2 . (ote-Ite) . d . 6. The difference,

in meters, from the outer track edp to the inner raoic _ede (ote-ite) is one

tack-width. lbr this ex-Mple, E(N)-2.(ote-.ite)*500.015.l.5.(ote-ite) or

1.5 tImes a traock-4dth o.,' the vehicle (in meters).. This calculation is siply

the area swept out by the vehicles tracks times the censtant minefteLd density.

In integral form, however,
E(N) L w/2-i (X,e ) U yw/2+o. ) dx) dy (4)

0 w/-tew2et

Since 5(x,y) a 0.015 Mm 2 lor Ox-ew, Oyd, we have,

E (110 r d. 0. 1(rw/2-ito dX +iw/2+ote d)d10 .jw/2-oto w/2+it

0 Jd ((Q.015--2)(ote-Lte))dy

- O.030(ote-Lte)d

a (1.5)'(ote-ite) (5)
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This Is the identical result obtained eariler.

Consider now that the vehicle goes through the minefield on sometnh-ng

other than a straight line path. Define P(m) = (X(m),Y(m)) as the pararErrical

representation of such a path, where m ranging from 0 to 1 relates to the

amount of the mission complete (i.e., m=O is the start of the mission, rr.-1

the end). The areas swept out by tracks of a vehicle are no longer simple

rectangles, as shown at FIG 2. Incorporating this paranetrical path represen-

tation, equation (3) becomes

E(N) -- (lJ 6(x y)(dY/dm)dx+.Jr (xiy)(dY/dm)dx) dm

where olx • outer left-track x = X(m) - ote/i4+s2(in'

ilx - inner left-track x - X(m) - ite//Tls=(M)'

irx m inner right-track x = X(m) + ite/41+s2 (m)'

orx = outer right-track x = X(m) + ote/-/l1s2(m)T

_y = Y(m) + s 2 (m)(X(m)-x)

s(m) = -X/c(dm

dY/dinm (6)

Analytically, this integral represents the summation of partitioned rectangles

that make up the area traced by the vehicle tracks, as shown in DIG 3.

Thus far, vehicles are restricted to following the prespecified oaths

perfectly., A probability distribution Dunction of play about the path is

inserted to account for effects of vehicles not able to follow precise paths.

.his play function, Q(z,m), is dependent upon distance from the path, z,

and the mission parameter measure, m. The final form for the expected number

of mine encounters'is

W(:i) = ! J0~-(zm) ([lx ý(x,y)(dY/dm)dx + ix 6(x,y)(dY/dm)dx) dz dm

Best Available Cop,
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where olx - X(m) - (ote..z)/A4Is 2 (m)'

ilx - X(m) - U.e.z)/,/1.•r(M)"

irx - X(m) + (ite+z)/.i;+z2 (m)

orx - X(m) + (ote+z)/V'+-s=m)'

y, s(m) as defined in equation (6). (7)

Once E(N) 1s calculated, the probability of the vehicle traversing the path

P(m) with play ifnotion 11(z,m) through a mnalfeld density 6(x,y) without

onoountering a mine i5s gven by equation (3).

Pr(O mines) W a

%he Pr(O mines) Is the in-minefield effectiveness (M) measure for breaching

vehioles. Being a probability, the I measure will always fall between 0 and 1,

the latter desinating a certainty of no mine encounters. The closer the IM is

to ono, the better the chances a vehicle will uoacessrualy 01o05 the minefield.

V APLICAMN

This section presents sample applications of the D measurue equation.

The intent of this section is to demonstrte the flexibility of the mdel; it

is not an exhaustive list of the capability of the procedure. The situations
to be studied will dictate the forma of three functions: minefield density,

vehicle path, and path play.

Let us choose as a pr)oblem measuring the ability of follow-on vehicles

to breach a minefield first cleared by a single lead tank equipped with a mine-

clearing roller and cleared lan* markin sysem•.

A minefield density function to represent this situation must be formulated.

Consider the mochamnoally v laced minefielc of 300 mUes in a 400 meter by 50

meter rectangle discussed earler. Wefore anry neutralization, the density could

be taken as a constant 0.015W1m'. As the lead tank equipped with a roller

passes through the minefield and detonates mines, the density of the minefield

is lowered. AzsumnIng perf'ect capabilities, and a strai;ht line breach

. ,3.17



perpendicularly through •he center of the minefield, the density of the minefield

drops to zero within the two rectangles traced out by the signature of the roller

banks. A representative minefield density function before and after nuetralization

Is shown at FIG 4. The aftez,-rutraulization minefield density function is used

to deteUine the expected number of mies encountered by follow-on vehicles.

MAe algbraic expressiotln of this density function is(o 0 o.9_ -2ool o.0
•(x•) (.015 othrv.se, o<x<40oo, o0 o 30

Physically, equation (8) models a lead tank that crossed the minefield at

mid-front (x=200 of the 400 m minefield), with 2 nmine-cleazrng roller banxs 1.1 m

wide separted by 1.8 meetr.

The second of the three M functions, the vehicle path, models the attempted

path or follow-on vehicles making full advantage of neutralized zones. In this

instance, the intended path for such vehicles in to retrace the straight line

path of the lead tank Wided by sam numrking system. The paranmterized form of

this path Is

P(m) a (X(m),Y(m)) : X(m) m 200
Y(m) W 50 .m (9)

At the start of the mission, the vehicle is at P(O) which is (200, 0) on

the Cartesian system eploy•d. By the end of the mission (m-l), the vehicle

has travelled In a straight line to (200, 50); this is the same-path as the

roller equipped lead tank.

However, die to many conditions;, follow-on vehicles cannot exactly duplicate

the lead tank path. A family of play functions in postulated and iTlemented

to model the ability of these follow-on vehicles to stay on the intended path.

The play function can be interpreted as the capabilityof the driver of a follow-on

vehicle to stay on the intended path based on his skills, training, driving aid

devices, and/or marking systems. A perfect path follow-on vehicle could be

thought of as one whose play never strays off the intended trace (i.e., the center

118
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o. the follow-on vehicle exactly retraces the center of the path of the lead

vehicle). As conditions drop from less than perfect, follow-on vehicles have

higher probabilities to stray away from the intended path. The sanmle play

functions used in this application are at FIG 5.
The discontinuous nature of 6(x,y) and several of the 1(zm) finctions lead

to cumberscme aritkwttc calculations. To ease this problem, a cmputer program1

was written to readily analyze the expressions. Table I is a smmwy of sample

applications of the IM methodology. Column fbur of this table showb the BE

measures for the postulated systems. The effective path width listed in Colum,

five is the sum of the range of play allowed and the width of the follow-on

vehicle.

SThe IM measures chwae si~nificantly over the aot of play functions. For

test run I, the ME is 1.00, meaning 100% ckance of crossing the minefield without

mine encounter. This is a reasonable result, for this trial is with no play;

the follow-on vehicle path exactly matches the lead tank path, and the tracks

6f the follow-on vehicles will always fall between the bounds of the safe

zones cleared by the rollers. Allowing the vehicle to sway t 0.5 m from the

perfect lane (trial 2) drops the chance of± encountering no minus 5 percentage

points. Nornally distributed play functions perform better than triangularly

distributed ones of equal rane (trial 3 vs 5 and L4 vs 6) because the normal

distributions have a greater central tendency (they hug the line better) tnen

the triangular distributions.

The I•E measure indicates that a reduction in play of 1 moter betters the

probability of no mine encounters by 0.13 (trial 6 compared with trial 5). The

chance of encountering no mines jumps from 72% to 85% when the follow-on vehicle

A listing of this progpam, written in SI24SCAIPT 11.5, is in the Appendix.

120
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Test Description Range (m) Q (z,m) Comment

pdf IPerfect Tracing
of Path.

No Play. 0.0 i
-1.0 0 1.0 Z

meterspdf _

2 Triangular Distribution 1.0
-1.0 0 1.0 Z

meters
pdf

3 T42i'gular Distribution 2.0
-1.0 0 1.0 Z

pdf meters

4 Triangular Distrbution 3.0
-1.0 0 1.0 Z

meters

pdf

±3o= W=0.0
99.97.% a =1/3

5 Normal Distribution 2.0

-1.0 0 1.0 Z

pdf meters

±3o=
99.97% P.=0.0S= 1/2

6 Normal Distribution 3.0
-1.0 0 1.0 Z

pdf meters
±3c= P, =0.5

99.97% o=1/3
7 Normal Distribution 2.9 (Right Bias)

-1.0 0 1.0 Z
meters

Figure 5. SAMPLE PLAY FUNCTIONS USED IN THE IME APPLICATIONS
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restricts its deviation about the path a half meter on each side. This translates

to a potential benefit due to increased survivability. This benefit can be

realized through increased driver skill, improved training, and/or cleared-lane

marking system, any approaches to result in less play of follow-on about a clear

path.

The fc.lowing ef ction describes astudy done to evaluate marking systems

and how IME could have been employed to achieve meaningful results.

VI DISCUSSION

The Concept Evaluation Program of CLAMS (3 December 1981, TRADOC ACN 52725)

compared the operational performance of chemiluminescent candles to highway

safety flares in marking a breach through a minefield. Trial runs were scored

as successful if a vehicle stayed within predetermined path widths 88% of the

time during a breach. Measurements were taken as the vehicle passed each

marker. Results from this test were non-conclusive. Only 7 of 203 attempts

by MGO tanks to negotiate a 4 meter path were successful. The binary nature

"of the outcome of a trial (labeled succeas or failure) contributed greatly

to the insensitivity of the results of the field experimenta. Moreover, the

outcome labels had little tu do with mission success or failures of vehicles

breaching hypothetical minefields as those simulated by the tests. Failure to

maintain a four meter path in the test did not directly equite to failure to

breach the simulated minefield, and the same is true for success. There was

no reference to a real military worth.

The :ME equation provides the means to combine minefield density, vehicle

track signature and path into a quantitative assessment of military worth. The

example results show the gains in terms of higher survivability by achievtng

narrower vehicle path tracings. Field experiments takan to measure vehicle path

functions can be tra.alated into quan1.itat.ivc measures attributable to the

military worth of the marking systitms throulh the IME.

1?3
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V CONCLUSIONS

The IME measure is an easily calculated, yet sensitive indicator of the

performance of mine and countermine systems. Elements of mine/counterm-ine systems

can be modelled by the various data and function inputs to the IME equation, as

listed in Table II. Complex functions can be evaluated with a computer program

specifically designed to solve IME equations. The IME measure is a useful

index because it translates system performance characteristics of alternative

mine/countermine systems into survivability figures. The IME process can

quantify benefits of new developments, whether organizational, operational, or

materiel in nature. IME measures can also be used as Input to higher level,

larger scope war games where previous data were randomly generated or estimated.

Examples of other uses of IME are:

a. Mixed mine type minefield effectivness. The different mine type

densities and corresponding track or vehicle signatures can initially be

separated out and later combined for an aggregate effectiveness measure.

b. Smart mine design parameters. The parameterized path function can be

time normalized and probability of mine/vehicle encounter base4 on duration of

exposure as well as area.

c. Countermine systems mix analyses. Single systems and combination

can be studied.

d. Wide area countermine systems analyses. Hypothetical countermine

system performances can be compared as to how well they neutralize threat

minefields for follow on vehicles.

4 f
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Mn/COU?1rEfWmE aeir BS~ E(WA'rIot OJtYUNENTS 'Y-.A" *-. %= L 'E

ME~ MTEM,~ 8N (X,Y) MI~nefield d~ensityr
fl(z,rn) Play

t'4E NEUrALIZATIM4 a (X,y) MiUnefield densi.ty
P(m) Path

M4AN= SYSTM P(m) Path
n (z,m) Play

'IEFAfIN P(m) Path
a (z,m) Play

P¶JZflMOAANK SIONATUM n1IMRA=CNf~S it. inner track edge dimension
ote outer track edge dimension

M'flE LAYWO PAMI'M (x,y) Minefield density

T~X~OAD O~~8(x.y) Minef'ield density
P(m) Path
a (z,m) Play.

TABM II. DE EQUATION4 00WOMMt MODELLING KD1E/cou~RIE1Ew ELEWITS
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ABBPZVIATIONS

AT Antitank
CLAMS Clead-Lane Marking System
FAE Fuel-Air Explosive
HEL Human Engineering Laboratory

SIn-Minefield Effectiveness
or Operational Tsting
USAES U.S. AW Engineer School
m moters
Winm2  mines per meter squared

SYMEHLS

d depth of munerield (moters)
w width of minefleld (meters)
m mission parameter op5.1
x position wizhin mirefield along the width (meters)
y position within minefield along the depth (moters)
z deviation frvm prescribed path (mnters)
it* inner track edp; the distance frf the center of a vehicle

to tte inner trak ed (mrters)
oe outreack ed; the distance from the center of a vehicle

to the outer track edge (moteor)
i.x inner left traAk edge Snt*epand
irx inner rig; track edge intewn•d
olx outer left track eod intestmnd
orx outer rigt tr•ck edge interand
P(m) paramnterized path function
X(m) X component of path
Y(m) Y oo=Vonent of path
dX/dm first derivative ol' X(m)
d*/cn first derivative of Y(m)
s(m) slope of vehicle orientation at m
E(N) the expected value of the number of mine encounters
Pr(n) the probability of n occurances
6(x,y) delta, the minefield density function
X ].azbda, the man

mu, the mean of a normal distribution
sip*r, the standard deviation of a nonral distribution

n (z,,'n) omea, the play function
* infinity
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CO•,*tI'E.R PROGRAM, LISTING I"OR Th'., .. EI'*....

INDEX Al.

LISTh"IG A2 - A4

TEST RUN 1 PLAY F•NCTION A.?D INPT,.n FILE A5

7EST. RUN 1 OUTPUT1 A6

T.EST RUN 2 PLAY FUNCTION AND INPUT FILE A7

TEST RUN 2 OUTPUT A8

TEST RUN 3 PLAY FUNCTION AND INPUT FILE A9

TEST RUN 3 O0-PLYT 2.10

TEST RU4 4 PLAY FuNCTION ANm INPUT ETLE All

TEST RUN 4 OUTPUT k12

TEST RUN 5 PLAY FUNCTION A14D INPUT FILE A13

TFST RUN 5 OUtIPT- A1I4

TEST RvN 6 PLAY FUNCTION AND INPuir FILE AJ 5

TEýr MUN 6 OUTYPT A16

TEST "UN 7 PLAY FUNCTION A0D fWl)T FILE A17

RUN 7 OUL"PL A18

I,

Al.
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ROBUST RANGE MEASUREMENT PREPROCESSING

William S. Ages and Robert H. Turner
Mathematical Services Branch

Data Sciences Division
National Range Operations Directorate

US Army White Sands Missile Range
White Sands Missile Range, New Mexico

ABSTRACT

The RMS/MTTS instrumentation system located at MacGregor Range is a range

measuring, multiple target tracking system. In order to obtain a vehicle

trajectory from this system, the range measurement from several receivers

are processed by least squares. Since the measured vehicle trajectories

are often low altitude, the resulting nonlinear least squares equations

are ill-conditioned. In addition, this measurement system is plagued by

outliers, sometimes by dense burst of outliers. The combination of

ill-conditioning and outliers is lethal and attempts to robustify the

nonlinear least squares processing have failed. An alternative is to

preprocess each of the range measurement sequences, eliminating the

outliers and replacing them if necessary. Each sequence of range measure-

ments is preprocessed by robustly fitting a cubic spli.ne using iteratively

reweighted least squares. Due to the nature of spline fitting and the

possible dense bursts of outliers, the choice of a good set of initial

weights for use in the iteratively reweighted least aquares is

important to the efficiency of the method. Those initial weights are

determined using robust, local fitting techniques. Several robust techniques

have been tested for this local fitting application, The robust spline

preprocessing is illustrated with some especially troublesome data sequences

and the relative performance of several robust methods for choosing the

initial weights is compared.
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INTRODUCTION

The RMS/MTTS instrumentation system located at MacGregor Range is a range

measuring, multiple target tracking system. In order to obtain a vehicle

trajectory from this system, the range measurements from several receivers

are processed by least squares. Because the measured vehicle trajectories

of interest are often low altitude and because of the geometry of the re-

ceiving stations, the resulting nonlinear least squares equations are often

ill-conditioned. In addition, this measurement system is subject to out-

liers, sometimes dense bursts of outliers. This combination of Ill-condition-

Ing and outliers is lethal and our attempts to robustify the nonlinear least

squares estimation process have failed. An alternative is to preprocess each

of the range measurement sequences, identifying the out lers, and replacing

them if necessary. The ill-conditioned least squares problecn the be

trc•ted without being troubled by outliers.

Suppose we preprocess the measurement sequence, R(t 1 ), i - 1,N. For typical

aircraft trajectories the measurement rate is 10/sec with a time of interest

of 40 - 120 sac so that N Is nften in'the range 400 - 1200. The purpose of

the preprocessing may be to detect outliers, to precompute measurement variances

for future least squares processing, or to synchronize several different dis-

crete measurement sequences. The preprocessing of the range measurement

sequence, R(t 1), is done by fitting a cubic spline to the discrete measurements

using iteratively reweighted least squares (IRWLS). Specifically, at the kth

iteration we minimize,

Wjk) (R(t) blkWk) . B(tj)) ,(.

Jul
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where 8 are the cubic B-splines and b~k) are the spline coefficients to

be estimated. The weights, W(k) are computed from the Hampel 4-ft'nction

using the spline fit from the (k-l)-- iteration.

w(W) (2)R(t) Jb 1- J 1 t)

k-iSi

where
X 1IIA•

a.s qn .,.x) a< Ix 0(b
a(° b-c sanx)) h<ixIl.

0 jxj>c

~( x),(x)

a
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(k-l (k-1)
S estimates the dispersion in the residual, R(t) - bi ' R(tj). The

value of Sk(l) can be computed either locally or globally from the residuals
at the (k-1)s- iteration, The dispersion S(kl) is a MAD estimate obtained

from

S(kl) * median JR(tm) b('-l)Bi(tm)I/.6745 (4)
mcT " t

If the set T is in some sense the set of points close to tP, the estimate

S Sk(l) is local. If the set T1 Is the set, T {tmjim - ,N} the estimate

is global. For the present application onry the global estimate S(k-l)- s(kl)
m• Is

11

will be used. If a very long data sequence, say about one hour, a local

estimate would probably be preferable to the global estimate.

CHOICE OF KNOTS

Let (Ti, I w I,MX be a set of knot times. These. knot times are used to define

the cubic B-splines, B1 (t 1 ). Of most importance in the choice of the knot times

is their spacing, which determines the ability of the cubic spline to fit the

data. However, for each additional knot time there is one additional spline co-

efficient to be estimated, thus increasing the computational load. Thus, we want

to have as few knots as possible and the rules for their choice simple and yet be

able to adequately represent the data. With this simple philosophy for selecting

knots we will try to assign a fixed number of data points, NPTO, to each knot in-

terval. The first four knots are placed at the first data. The last knot inter-

val may have more than NPTO points but fewer than 2 • NPTO data points. If there

is a large time break in the data, a knot is placed at the beginning and end
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of the time break. The inter'.fal between these two knots has zero data points

and the interval Immedi-tely precedinq the time break may have more than

NPTO points out fewer than 2 . NPTO points. If immediately after a time break

there 4s a second time break before NPTO points have been read, the few (less

than NPTO) points read between the two time breaks are discarded. If a time

break occurs while reading points for the first knot interval, the few (less

than NPTO) points are discarded and the first four knots repositioned at the

first data time after the time break. If a time break occurs during the last

interval, the portion of the last interval contiguous to the previous interval

Is kept and the remainder of the points in the last interval are discarded.

If there are at least NPTO points kept, these points form the last interval.

If there are less than NPTO points kept, these points are appended to the pre-

vious interval so that the number of knot intervals is. reduced b; ,.! . The

time difference between successive data points which is used to define a time

break is named FITBRK. FITBRK is dependent on the sample rate. The time dif-

"-• ference between successive data points used to define a time break in the first

and last knot intervals is FITBRK/5. This smaller value is used in the first

-M and last Interval because it is critical to obtain a good fit in these intervals.

The flow chart on the follc-,qing pages more clearly dWfines the logic for select-

ing the knot times. The following define the variables In the flow chart:

NOTS - number of interior knots R(.) - array of range measurements

KR - number of knot intervals NPTS() array of point counts for
knot intervals

TT() - array of knot times
IBRK - logical denoting the occurrence

NCOUN - total data point count of a time break

T(.) - array of data times STA - data start time

ETA - data end time
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f,4E LEAST SQ'qA.RES -ORMAL E04ATIO.TS

At the kth Itcr'.tlon of the FlttinC procedure the weighted sum of squares
(k N b k) y y

awl

is minimized. The least sqiiares normal equations are nbtained by differentiating

(5) with respect to b(k). Tho least sqijares normal equations are

I Wk) B(t T (k). N0 (h()kt (6)

j.t B %R(t I

where BT(tj) is the vector of cubic, -splines

B T(tj) - [tB(tj) Be(ti) . -n(tj)J (7)

Due to the nature of the B-splines the positive definite matrix on the left of

(6) is banded with three bands above and below the *'&in diagonal. To conserve

storage the four distinct diagonals of this matrix are stored as columns of a

vertical matrix. The dimension of the vector b( k) is NOTS + 2 where NOTS is

the number uf interior knots, The banded least squared normal equations are

solved by a banded Cholesky decomposition vlgorithm. The eums of hoth sides of

(6) are performed sequentially so that all of the ranges and weights are not

needed in core simultaneously. The IRWLS cen be continued fnr a fixed number

of iterations or until the fit has, converged.

INITIAL WEIGHTS

In many situations the IWLS procedure works successfully when all of the

initial weights are set to one, I.e., the iteration is started with an ordinary
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unwelthted least squares solution. We have found that the use of the unweiht-

cd least scquares start will usually result in converioance of the IUWLS cubic

spline to a good fit with outliers correctly identified, but that many fewer

Iterations are required if a robust choice of initial weuihts is used, When

outliers are present in either the first or last intervals, the choice of

initial wetphts in these Intervals is most important.

The initial weights for the robust cubic spline fit are chosen on a localized

bas is. Let R(ti), I a 1, NPIS(K) be the range measurements in the K- knot

interval. To determine the weights W(O), I a 1, NPTS(K) in the Kit interval a

linear curve is robustly fitted to the measurements in the interval. Several

methods for robustly fitting the linear curve have been tried, including the

nested median method of Siegel C 1), the method of Theil [ 21, a modified Theil

method, and an M-estimate using a Hampel ý-function. Most methods performed

about equally well on the data sequences tested.. The results of some of thes,•

tests are given in Appendix A. Because of its simplicity, the modified methed

of Theil was selected for routine application. This method is described in the

following paragraph.

Let R be the median of the observations in the Kt-h knot interval.

R - median {R(ti)}
I w 1, NPTS (K) (8)

Let t be the time corresponding to R. The median R can be represented as the

average of two observations,

R- (R(t + R(t )/2 (9)

where m, - m2 if NPTS(K) is odd. Define the set of slopes {S1 }

153

............................ ."......".. '""" '""'°'"""""" ""'" °'"'''"'"°""' -. . "."""



st .M '.(t, " -1. NPTS( (10

Lot i be the median of the slopes,
i-mediann S
i a 1, NP'rS(K) (11)
t 0 ml, m,

Let be the residual,

F ' R(ti) - 5(t - i) * 1, NPTS(K) (12)

Let F be the median of these residuals,

- median {F}
i -i16 NPTS(K (13)

Now compute the residuals,

rt " at " •' t-F - 1, NPTS(K) (14)

The intial wetghtso W•°),are computed from these residuals using a (4mpel

*-function.

W(o) (k i - I, NPTS(K)(15)

( )
sk

Where sk is the robust dispersion parameter,

sk - median ({r 11)/.6745 (16)
I

Since the main concern in setting the Initial weights Is to protect the cubic

spline fit from the gross outliers, the break points of the Hampel *-function

are set at a• 2, b * 3, c : 4.
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SOME EXAMPLES

Several hundred data passes have been run with the fitting procedure described.

Since there is an average of maybe five receivers on each data pass, the

robust preprocessing method described has been used on more than one thousand

measurement sequences. The method has performed successfully on all of

these sequences. Most of these sequences are rather uneventful, having only

a few isolated outliers. There have been some sequences which have some

rather denst bursts of outliers. These sequences best illustrate the ability

of the method described to detect outliers. Fig 1 presents a range measuremont

sequence and Fig 2 the robust cubic spline fit to this sequence. Note that the

outliers in Fig 1, which have been darkened, occur in many sizes. The

outliers at the top of the graph were added by hand since they all occurred

far off scale at the top. The sequence of Fig 1 has-about 10% outliers.

All outliers have been successfully detected and removed by the robust spline

fit. The measurements in Fig I have two dense burst of outliers, one in the

interval (62356.6, 62359.5) and another in the-interval (62367.2, 62375.4).

The measurement sequence in Fig 3 has outlier bursts in the intervals (62358.4,

62362.6), (62374.4, 62376.4), and (62379.7, 62382.4). The sequence in Fig 3

has about 15% outliers. The sequence in Fig 5 has bursts of outliers

during the intervals (63117.8, 63122.6) and (63128.2, 63131.5). Any points

away from the main curve should be considered outliers In Figs 1, 3, and 5.

Note also in Figs 1, 3, and 5 that there are time breaks in the measurement

sequences, another important consideration in preprocessing. The cubic

spline fit to the sequence of Fig 1 is given in Fig 'he cubic spline

fit to the sequence of Fig 3 is given in Fig 4 and the cubic spline fit
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to the measurement sequence in Fig I is given in Fig 6. The knot intervals

in Figs 2, 4, 6 are designed to contain twenty data points. Note that some

of the time breaks have been filled with fitted data points. The filling

of the time breaks is controlled by the length of the time breaks in

relation to the sample rate and the proportion of outliers found in a

knot interval. The robust cubic spline preprocessor has deleted all

outliers from the measurement sequence, generated measurements during the

time breaks as desired, and synchronized different measurement sequences

if desired. In addition the measurement variances are available for

further processing. The IRWLS cubic spline fit converged in 3 - 4

iterations for the examples displayed. This fairly rapid convergence is

dependent on a robust method for choosing good initial weights. Surprisingly,

the IRWLS cubic spline iteration for these examples also converges using an

unweighted least squares start, but at the expense of more Iterations.

For the measurement sequences displayed here the IRWLS cubic spline fit

converged in 7 - 8 iterations using an unweighted least squares start.

Thus, at least in these examples, a good choice of the initial'weights

results only in a significant Improvement In computing efficiency and not in

an improvement of fit. Besides a good selection of initial weights, another

important choice Is the number of data points per knot Interval, NPTO.

NPTO must be large enough so that Is likely that nnly a fraction, say jess

than one fourth of the data points in any interval will be outliers. On

"* the other hand, if NPTO is too large, the robust linear curve fit may not

* he a good enough representation of the variation of the data in the Interval.
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APPENDIX

This appendix describes several methods of choosing the initial weights

for the robust cubic spline preprocessing and compares the results of using

these methods on several data sets. Each of these methods robustly fits a

linear curve in each of the knot intervals and then computes the initial

9• weights from the curve fit residuals using a Hampel *-function. Let

R(tt), t1 - 1, NPTS(k) be the range measurements in the k-th knot interval.

Theil Method
4'

Define the slopes s

R(tlt ) - R(tt)j ti - ti

Let s be the median of these slopes,.4

i * median (s ij
i~iStJi

.4

Define the residuals Fit

R(ti) - t

Let r be the median of the residuals, Fr

F - median -IF

i.1 ,NPTS(k)

Then the residuals r, F" F are used to compute the Initial weights with a

Hampel *-function.
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* Nested Medians

Nested or repeated medians is a robust regression method recently described

by Siegel [1]. Siegel shows that tlls method has the highest breakdown

method of any known methnd. This method is particularly easy to apply for

a linear fit. It is similar to the Theil method and modified Theil

-i method already described.

Define the slopes stl,

S R(tj) -Rlt11 i j(A1

t (A-i)

Define it by

t median (s i) (A-2)
Jul ,NPTS(k)

S•joi

"and further let i be defined by

i - median 6 11 (A-3)
1-1 .NPTS(k)

Similarly, let aij be the intercepts

a " R(t 1 )t- R(t )tA
:.? ll -t;• tl joi (A-4)

Define i am

-i " median al (A-,)
Jl 1 , NPTS(k)
.3-i
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* and further define i by

*median {6t} (4-6)
1-1,NPTS(k)

Let ri be the residuals

r • R(t)- - a t s. sPTS(k) (A-7)

The weights WO are computed from these resid,jals using a Hampel

*-function.

The following data sets were taken from the knot Intervals of the data
4sequences used previously to illustrate the application of the robust

range measurement preprocessing. The first data set, shown in Fig Al is

taken from the measurement sequence given in Fig 1. The measurements in this

set are from the time interval 62356.6 - 62359.5. The second data set,

shown in Fig A2 is taken from the measurement sequence in Fig 5. The

measurements in this set are from the time interval 63128.2 - 63131.6.

In each of the data sets the weights are calculated from the residuals ri by

J

*(rj,) (A-8)r1(r1 )

where *(') is a Hampel #.function with breakpoints 2., 3., 4. In both of

those data sets there are eight outliers in the sample of twenty. Each of

the robust linear methods seem to have no difficulty in Identifying the

outliers in these data sets.
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HOW GOOD IS GOOD - A FIELD EVALUATION OF CAMOUFLAGE

c GEORGE ANITOLE and RONALD L. JOHNSON

064 U.6. Army Mobility Equipment Research and Development Command

Fort Belvoir, Virginia 22060

AB S TRACT

In development of prototype camouflage, performance characteristics are
determined by field evaluations. The ultimate camouflage being that of a
target with no restrictions on time or manpower in its erection or retraction,
using standard materials and methods. This ultimate condition is not normally
measured in field studies where prototype camouflage is evaluated against a
base line target. Percentages of camouflage improvement in detection and iden-
tification rates by the prototype over base line conditions are identified.
This paper concerrns a real field study.designed to allow the camoufleur to
measure relative improvements of prototype camouflage against both base line
and ultimate conditions. The camoufleur then ascertains true values of the
prototype camouflage, or How Good is Good.
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1.0 INTRODUCTION

The development of camouflage involves many phases aed evaluations. In
all cases, the developers goal is to produce the best camouflage poshible within
the restraints of time and manpower. One method of camouflage evaluation is
through the conduct of field tests. The resulting data is analyzed, enabling
the developer to determine the effectiveness of his product. The problem with
this method of evaluation is that while it provides a good estimate of the
prototype camouflage performance, as compared against the base line camouflage
condition, no information is available for a comparison against the ultimate
camouflage condition. The ultimate camouflage condition is defined as having
no restrictions on time or manpower in ita erection or retraction, using stan-
dard materiels and methods. Such a multiple comparison would allow the develop-
er to determine the virtues of additional prototype refinement to approach
thG ultimate camouflage condition. This paper concerns a real fielc! study de-
signed to allow the developer to objectively measure the relative effectiveness
of prototype camouflage against both the base line and the ultimate camouflage
conditions.

2.0 TEST SITE AND EQUIPMENT

2.1 Test Site

The test site was located at the USAF, Avon Park Bombing Range near
Avon Park, Florida. (60 miles south of Orlando, Florida). This range had an
average elevation of 68 feet above mean sea level, and is flat in topography
with mixed Oak, Pine, and Palmetto tree hammocks dispersed in sawgrass. The land
is primarily swampy in nature anid displays a light green color throughout.

2.2 Test Equipment
The equipment tested consisted of two trailers with a prime mover

and were over 40 feat long, 7 feet high and 8 feet wide. The equipment was
tactically emplaced along a tree line (one was emplaced outside the treeline
and one was partially concealed by the treeline).

3.0 CAMOUFLAGE CONDITIONS

3.1 Pattern Painted (Base Line)

The two test gems were pattern painted the tropic color blend in
accordance with TC5-200 •, This color blend consisted of 45 percent forest
green, 45 percent dark green, 5 percent light green and 5 percent black.

3.2 Pattern Painted with the Addition of Prototype Camouflage

The second camouflage condition was i4.hieved by tha addition of
camouflage kits to the two patterned vehicles. These camouflage kits were
constructed of special supports, and modified lightweight net screening.
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3.3 Pattern Painted with the Addition of Standard Camouflage Screens
and Techniquis (Ultimate)

The third camouflage condition was obtained by using the U.S. Army
Standard Lightweight Camouflage Screenng System deployed over the vehicles.

The screens were erected in accordance with TM5-l6OO-200-10 2 .. Camouflage im-
provements were made to the screens by tying natural foliage to the support
systems, around the screen edges, and protruding through the screens. Oak leaf
mulch was dispersed around the edge of the camouflage screens to break tp the
straight line edge effect. Palmetto fronds and sawgrass clumps wece placed
over the batten spreaders of the support system to reduce shine and were woven
into the camouflage screens to simulate the appearance of natural foliage.

4.0 TEST IMAGERY

The site was photographed using 9 inch strip color, aerial film at
scales of 1:5,000 and 1:10,0003/ each with 60% forward overlap. The target
location was identical for each camouflage condition. The end product was
three strips of imagery at each of the scales of 1:10,000 and 1:5,000. The
1:10,000 scale of imagery was 17 frames long while the 1:5,000 scale imagery
was 5 frames in length.

5.0 TEST PROCEDURES

I.. The subjects consisted of 99 pairs of operational Image Interpreters
(II's). They were instructed oti the purpose and tasks to be performed. Each
team had three-quarters of an hour to detect turgets on one of the strips of
imagery scaled 1:10,000. At the end of this time period, the II's wera given
the corresponding strip of imagery scaled 1:5,000 and a set of equipment keys
that they studied in an attempt to identify the two targets of interest. They
were allowed 15 minutes to determine an identification. No ceam of IL's
viewed more than one camouflage condition.

6.0 RESULTS

The percentages of detection for each of the two test items were deter-
mined for each of the three camouflage conditions. A statistical 4 / analysis
of the data revealed that of the two items investigated, the item embedded in
the trees indicated no significant differences between the percentages of detec-
tion for the three conditions of camouflage identified in Section 3.0. The
item not as deeply embedded in the trees was identified by more II's and yielded
significant differences between camouflage conditions as follows:

o The yattern painted item was detected significantly ( - 0.025)

more often than the pattern item with standard camouflage screens. (Ultimate
Condition)

o The pattern painted item with prototype camouflage was detected
significantly ( • 0.025) more often than the pattern painted item with stan-
dard camouflage screens. (Ultimate Condition)
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The percentages of identification for each of the two test items ware
determined for each of the three conditions. A statistical analysis of the
data revealed that both target o ':.tems yielded significant differences between
camouflage conditions as follows:

o The pattern painted items were identified significantly (a- 0.025)
more often than the pattern painted items with the addition of prototype camou-
flage.

o The pattern painted items were identified significantly (a - 0.025)
more often than the patternt painted items with the addition of camouflage
screens and techniques. (Ultimate Conditions)

7.0 DISCUSSION

The results of the study indicated thst the design of the experimient was
successful in statistically evaluating the base line camouflage condition against
both the prototype camouflage condition and the ultimate camouflage condition.
A look at the detection data indicates that for the item not embedded in the
.trees, the prototype camouflage yielded siguificantly (a - 0.025) less detec-
tions than the base line camouflage condition. However, it was detected signi-
ficantly more than the ultimate camouflage condition. This finding tells the
camoufleur, that while the prototype camouflage for the item has decreased de-
tections, more development is required to bring it up to speed with the ultimate
camouflage condition. However, the trade off of the amount of time and manpower

* required to decrease the number of detections must be considered. The number
of detections for the item embedded in the trees is so low that no further develop-
ment is necessary.

The expe.imental design was also siuccessful in statistically evaluating
the base line camouflage condition against the prototype and ultimate camou-
flage conditions for the task of item identification. In this study, both the
prototype and ultimate camouflage conditions yielded significantly (Ow 0.025)
less identifications than the base line condition. There was no sisnifican.

* difference between the number of identifications for the prototype and ultimate
camouflage conditions. This fact would indicate to the camoufleur that no ad-
ditional refinement is required to reduce rate of identification.

8.0 SUMMARY

The purpose of this study was to design the field evaluation of a camou-
flage system in such a manner that the camoufleur could scatistically differen-
tiate between the base line, prototype, and ultimate levels of camouflage for
both rates of detection and identification. With this information, the camou-
fleur could determine the feasibility of additional prototype development to
approach the effectiveness of the ultimate camouflage condition, The ultimate
camouflage condition was defined as having no restrictions on time or manpower
in its erection or retraction using standard materials and methods. This
study was conducte4l in Avon Park, Florida. The results from the data, using
operational II's showed that the desired experimental discrimination between
camouflage levels was achieved.
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t .ESTIMATING MEAN LIFE FROM LIMITED TESTING

Donald W. Rankin
Army Materiel Test and Evaluation Directorate

US Army White Sands Missile Range
White Sands Missile Range, New Mexico 88002

ABSTRACT. Exact probability formulae are developed, with no restrictive
assumptions, for use with tests which produce data of the constant failure
rate type. Although universally valid, the formulae are particularly apropos
when straitened test circumstances are dictated. Programming suggestions are
included. (- -

1. INTRODUCTION. This paper is a sequel to the one entitled Estimating
Reliability from Si•ll Sample& and presented before the twenty-second
conference on the Design of Experiments in October 1976 [4).

The Polsson distribution is treated in a manner parallel to that afforded
the hinomial distribution in the earlier paper.

2. DEFINITION OF Fv),NT. Probability statistics require the
identification of a unit commonly called event or trial. Often this
identification is self-evident. Suppose a test consists of drawing a sample
of specified size (n, say) from a larger population of similar items, then
determining the number of defective items (k) in the sample. It requires no
stretch of the imagination to say that drawing thiat sample of size n
constitutes an event or trial and that the failure ratio k/n is the reeult of
that event. It is to be noted that the failure ratio is dimensionless; i.e.,
k and n are measured in the same units.

Identification is not always so clear-cut. For example, suppose an
operator of heavy trucks notices that in the preceding six months, he hasexperienced 13 major mechanical breakdowns--one every two weeks, on the
average. The definition of failure is obvious, but what Is a euooes? To
what do we add k to get n, the sample size? The mathematical answer is that n
+ .. But this is also a useless answer; no realistic test design could
require an infinite sample size.

To avoid facing this dilemma, let us arbitrarily define event in some
convenient unit different from that in which k is expressed. As a
consequence, we no longer have a failure ratio. In its place we substitute a
failure rate--of k per event. Thus the failure rate depends upon an observed
k, but upon a defined event.
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To return to the truck operator, let us say that examination of the log
ooks reveals a total operating mileage of 267150 for the period in question. "

This figure (267150 miles) is taken as the definition of event. The observed
failure rate then becomes

13 failures * 0.0000486667 failures per mile.
677150mies--

It is sometimes regarded as preferable to express the reciprocal of the
failure rate, calling it mean Zife. Thus we would have

2671al0ures 0 20550 mean miles between failures.

The term event can be defined in any of a variety of units--area, volume,
weight, time--almost anything that can be measured.

3. POISSON PROBABILITY. Consider the well-known series

_ _ _ _ _O,_ _. . . ., .s.. .
ex • ) (k 0, 1. 2, 3,#.-.

k-o Ik

This series converges for all finite values of x, provided only that x remains
constant. Multiplying by e-x produces ..- '.

k -x
1- aý- (2

Poisson noted (1837) that if x is a constant failure rate and k is a non-
negative integer, the probability of observin. exactly k failures durinq an
event is given by the appropriate term of the above expansion; I.e., by

p(k) X eX (3)

lk

This last expression, then is a probability function in the discrete variable
k. Unfortunately, however, it does not suffice. In most test designs, it .. ". -
will be possible to define event arbitrarily and to observe the value of k
exactly, but nothing will be known about x. Usually, in fact, x will be the
principal value sought. A probability function in x is required.
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.,'Now x can take on any non-negative value; i.e., it is a continuous
variable within the limits 0 4 x <.. Necessarily

1 - f(x) dx

defines f(x) as the required probability function in x, whatever form it may
take. With k fixed, the expression

41 I.k

becomes a density function in x (though not necessarily a prohability func-
tion). It is necessary to evaluate the defirite integral

d x
k 0 Ikk

E Since k is constant, 1k can be taken outside the integral sign, leaving

1k I xk e-x dx * r (k + 1)
-k 0

:o''

but also, k is an integer, hence Ik - r (k + 1).

It is seen that Ik= 1, and therefore that

;.• k e-x
f(x) . xk e-

S4Is the required probability function In the continuous variable x.
"It is helpful to inspect graphs of the probability function

k -x
f(x) -k e (4)

Several are depicted in Figure 1 for various integer values of k. Among
features which should be noted are the following:

1) When k - 0, the function degenerates to

.6 f(x) • e-x (5)
and is most easily treated as a separate case.
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2) f-(x) =• {kxk-1 e-x e-x xki - Ik (k - x) (6)

Thus a maximum occurs when x - k.

3) f'(x) =k(k-1) 2kx + x21 (7)
Ik

A point of inflection is found whenever

.1 x2 - 2kx + k(k - 1) 0Q,

i.e., when x a k + /J'. For some prograinwiing purposes, when k 1, the origin
may serve as the missinq point of inflection. The slope there is unity.

4) Every curve crosses every other curve exactly once, and in
consecutive order.

5) Two consecutive curves intersect at the maximum point of the
second, since the only non-trivial solution of

xk e-x . xk2 + A-x

occurs when x - k + 1.

4. TRANSFORMING THE PROBABILITY FUNCTION. If the case k a 0 is treated
separately, the transformation w a x/k suogests itself. Letting x - kw,
dx a kdw and it is seen that

(kwk pkwkdw -1,
kw-o lk

since inerely employing the transformation will not affect the value of this
definite integral. But the probability function In w is

g(w) . ke 'kw (kw(k

Basically, this transformation rescales the abscissae by 1/k, and hence
the densities (ordinates) by k, thereby preserving area. Several graphs of
this function are shown in Figure 2. Notice that every curve has its maximum
point at w 1 1. Also, w 1 1. Points of inflection occur at I ± I/A-.
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* Althouoh the transformation Is useful for studying this family of
functions, it matters very little whether levels of confidence are computed
from

z z/k
f f(x) dx or f g(w) dw.

Xuo wao

In this paper, the form in f(x) will be used.

5. INTEGRATION BY PARTS. When a function is defined by (or can be
described as) a definite inteqral, very frequently it will be found that
repeated integration by parts will produce an expansion suitable for
computing. In fact, as in the instance at hand, It may be possible to expand
in either ascending or descending factorials (or powers, as the case may be),
the--"5Ty-producinQ; two different expansions, both of which are valid. Usually,
one will appear in the familiar form of a power series which converges more
rapidly for smaller values of the argument. The other will be the associated
asymptotic expansion. If the parameter which appears in the factorial part of
the probability function can be restricted tointeger values only, the asymp-
totic expansion hecomes finite in length and is an exact expression.

The sought probability integral can be stated

Z z k -x
P(z) -fo f(x) dx - x o X A dx (9)x -o x -o Ik

and gives the probability that x does not exceed the (perhaps arbitrary) value
Z.

Can the indefinite integral f X Ik-e dx be evaluated by parts, k being a

fixed, positive integer?

Let u eX and dv = dx.
Ik

Then du - -eeXdx and v - xk+1

1k +1

* NkThus x e-x k+1 -x Xk+1
f dxx + fa dx
IkIk+1 I1k+1

It is apparent at once that the second integral is like the first, save k
has been auqmented by unity. It is clear that the process can be reapplied
endlessly, yieldinx

f Xk e- dx - e -X xk + I t . 1 , 3 . . )
Ik dxIk + ' 1" 2 3s '
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Passfi'q to the lower limit of the definite integral (x = 0), the sum vanishes,
"since x factors every term. (It may be more correct to say that the sum
reduces to the constant of integration.) Thus

Z xk e-x -
P(Z) f .&-j dx= e (10)

'xo Ik 1=l 1k + i

The term-to-term recurrence ratio is z/(k + I). Since z is constant while
(k + i) increases without bound, the series will (eventually) converge for all
positive values of z.

k
Now let u A- and dv a, e'Xdx. rhen

du dx :k dx and v a -e-x, whence
Ik tk - 1

f Xk e X dx -e-x Lk + e dx.
Ik Ik Ik- 1

Noting that -eX will factor every term, we can write the result In-the form

'.1
k -x ' k k-i .1I Ik I dk k -. *_..1 2

At the lower limit (x - 0), the rlght-hand member becomes

lim eo a -eX-.

The definite integral thus is given by

z k -x k k-'.-P(z) = 1 Ze dx 1 -e t + z . . z +
0 _k Ik Ik- 1

Are the two solutions equivalent? Is it true that

!eZ zk+i -1 ez + z +2a+ .+•-1 + +

j lk+i + 2 1k 1 Ik
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* Multiplyino by eZ and transposinq, it is seen that

+z k + !zk+t ez
I+z+. k .+ + i__ i=1 ki z

is the well-known Maclaurin series for ez, Therefore the two solutions are
indeed equivalent.

It is a fact that if the upper limit of integration be taken at the
maximum (w - 1; i.e., z - k), the level of confidence will always be less than
1/2 and hence of little statistical interest. (See Table 1., However, the
araument z - k has an important use of a different sort. It enables us to
select a series for computinq whose terms are known to decrease motiotonically.
This results in worthwhile economy for larqer values of k. There are two
cases to consider.

First: Let 0 < z 4 k. The series

* ~z) e-zzk+i (10)
P ) - 1 Ik + i

is chosen for use. Obviously, the term-to-term recurrence ratio is given by

z/(k + I). Under the stated conditions, this Is always less than unity.

"Second: Let z > k. The formula

P(z) - 1 - e ,_ + ... + + z +1(
ilk lk - 1 2

is used. The recurrence ratio is

k + I - I, (1 - 1, 2, 3, . . ., k)
z

* which aqain is less than unity. For large values of k, the interior series
can be summed as though it were an infinite series, thus achieving a laudable
saving in the number of terms required.

6. COMPUTING A LEVEL OF CONFIDENCE ýz > k). The value of z may be
derived from any source, or it may be arbitrar'y specified. The proper
formula, as we have seen, is

P(z)-1 ez I~k Ik - 1 +.. +z +1!(
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TABLE 1

CONFIDENCE LEVEL AT MAXIMUM ORDINATE

k
k f f(x) dx

0 0.000000
1 0.264241
2 0.323324

00,522768
4 0.371163

5 0.384039
6 0.393697
7 0.401286
8 0.407453
9 0.412592

10 0.416960
12 0.424035
15 0.431910
20 0.440907
30 0.451648

50 0.462483
100 0.473438
200 0.481206
400 0.486706

1000 0.491591
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When k is small (k < 12, say), the resulting finite expression submits
easily to direct computation. But when k is very large, two difficulties
arise.

First: The number of terms becomet excessive. If the series is
summed as though it were an infinite series--i.e., the relative size of each
new term is observed--the process can be truncated when additional terms no
longer affect the result in the compLIter.

Second: Large factorials will overflow the computer. To circumvent
this, the first term of the series is computed by logarithms. Stirling's
formula (k > 11) is given by

1
In Ik - 0.91893 85332 + (k + -) In k

2e e

1 1 212k 3- -7 . (12)

The first term is (disregarding sign) ; hence, its logarithm will be
1k

k lnez - z - Inelk, which should not cause overflow within the range of useful

numbers.

7. COMPUTING z WHEN A LEVEL OF CONFIDENCE IS SPECIFIED. (L - P(z) ) 0.5)
No new formula Is available for the inverse. Instead, successive approximations

zo , Z2, . . . are computed until a steady state is reached. Newton's
method serves very well. See the discussion in [4] pp. 279-280.

For any zi, compute P(z ), f(z) and f'(zi). The requred incremen-
tal area s of course P(z) - P(zi). We approximate this area with a
trapezoid of width Az whose ordinates are f(zi) and f(zi) + Azf'(zj).
We have seen earlier that the first term of the wanted series for P(zj) is

eZi zik
Sk

e -zi i k

Also f(z ) -

k_

and f(zi) 11- - 1} f(zi).
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The approximating trapezoid is given by

P(z) -P(z 1) aAz {f(zj) + Zf._(Z0)}

which can be solved for &z.

t. 2+
&~z - -f (z ) [f(zj)] ?f-(Z1 ) [P(Z) -Pz)

NSince ultimately &z + o, it is apparent that the positive square root yields
the true solution. Notinq that

f(Zi) Z
fo~zi) k - z

.2 the formula can be simplified to

*4Ru (\2The process is stable when started from the right-hand point of inflection;

7 k + eF(14)

8. THE BEST ESTIMATE OF THE FAILURE RATE.* For a specified level of
14 ~ confidene L, t general solution of the probability integral is

s
*L * f(x) dx.

There are, of cour'se, an unlimited number of solution oairs (a, s) which
satisfy this equation. Up to this point, we have concerned ourselves with the
case a a o. This form properly is used to test for compliance with an imposed
standard,

Sometimes, however, that standard is absent, unrealistic, or even
erroneous, Put it; is still required to make a meaningful statement about the
failure rate. In 'this situation, the Best Fetimahte is recommended.
Essentially, that solution pair (a, s) is chosen which minimizes the
difference I s - al.,

*See. [4] pp. 267-270.
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Values of a and s thus determined are deslqnated by a tilde (a, s).

Some properties of the Best Estimate of the Failure Rate are:

a. ; - 1 is minimum, by definition.

b. The limits of integration lie on opposite sides of the maximum;
i.e., a < k <s.

c. The ordinates at a and i are equal; i.e, f(a) - f(s).

d. The solution is unique.

There are several steps in the solution.

Step One. For any si, compute f(si), f,(si), P(si).

(To begin, set so - k + rk.)

Step Two. For each si, solve for the value a < k such that f(a) - f(si).

For any aj, compute f(a 1 ) and f-(ej).

Then

•f(s 1) - f(a(1):,Aa - . (15)
f--(aj)

. The process is repeated until f(a) and hence a is found to the desired
accuracy. This value of f(a) is then associated with f(si) by appending the
.subscript . (The subscript is dropped, being no longer necessary.) For
every new value of si, the a-process is begun afresh by setting

aj -k -/-k.

Step Three. The Value faj) - f(sl) having been found, compute
hal)e (The values for ai and f (ai) w 11 already have been computed.)

.:he desired incremental area is L - P(s1 ) + P(a1 )

Step Four. The incremental area always will appear In two separate
parts. The ratio of these areas can be estimated quite closely by the slopes.
Thus

- P(bi) + P(ai f(a4s)

will appear on thc right. It is convenient to express the ratio In terms of
the ordinates.

,.1
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fi, (aa, f(a,

f-a)- f'is 1 ) (\..± f(aj)-(.2) f(s1)

But since f(a) f(s), this value can be cancelled from numerator and
denominator, leaving

fi(ai) s1 (k - aj)• (16)
f-(ai) - f'(s 1 ) k(sI - ai)(

Thus a suitable approximatinq trapezoid is given by

~ sj(k - aj) As
- P~s1 ) + P(ai) Ik(s. aj)) -,AS {f(si) + L- f'(si)} (17)

which can be solved for &s by the method of Section 7, Above.

9. EXPRESSING RESULTS IN TERMS OF MEAN LIFE. It should be noted that
the methods developed in this paper are virtually independent of the
definition of Event. (Event often will be synonymous with Duration of Test.)
Suitable values of a and ; (or z, as the case may be) havina been found, it is
apparent that they should be expressed it, the units faiZu'ee per event. If at
this point the definition of event is imposed, the results can be expressed in
faitu'ee per mte or faiZuree per hour' or whatever.

Now the simple reciprocal converts to mean tife. It should be remembered
that taking the reciprocal reverses the sense of inequality signs.
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APPENDIX A

"CHI-SQUARE AND OTHER POISSON-RELATED FUNCTIONS

Let us define the following special functions:

Incomplete exponential function:
,'

e (x) + + x + 2+ . + n.
n 12 In

The series consists of n + 1 terms.

Gamma furction:

Sr(x) e e t dt (x > o)"r!x)-t -

Thus r(x + 1) a 0 e t dt.

"Incomplete gamma function:

Z -t X-1
y(x,z) f e t dt (x > o)

and, of course, o < z <-.

Prym's function:

-t x-1
r(x,z) - e t dt (z > o)

z

Immediately it is seen that

Vy(xz) + r(x,z) - r(x)

* and that dividing both sides of this equation by r(x) will produce a
*2 probability relationship.
.'

Thus we can state
-Y (x,z) r(x,z)

P(XZ) " - 1
Sr(x) r(x)
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Now for any particular problem, x and hence r(x) will remain fixed. In terms
of Prym's function we can write

1 e -t x-1

P(x,z) 1 i 'r(x) e t dt.

It is easy to develop r(x,z), using repeated integration by parts.* It is
found that

rxz e -Zz x-1 (x - 1) (x - 2) . . . (x - s)

is a valid asymptotic expansion for fixed x and larce z.

When x is an integer, the series terminates.

When x is not an integer, the terms of the series alternate in sign after
s > x. The series diverges after s > x + z.

Let us replace x with k in the formulae in order that x can be employed
as a variable of inteqration. Thus the formulae restated appear as follows:

P(k,z) * 1 - r(k.z) * 1 - -1 [ek_1 (z)]r(k) e

i!~~ ~ 2~~z • -e -k-1 kil (k -1) (k - 2) (k - s)
P(k,z) - 1 - -r-)Sa;• ~~r(k) soz

¶ When k is a positive integer.

This case of k being a positive integer was studied at length in its
application to samplinq distributions by Helmert (1876) and K. Pearson (1900).
Thus arose the statistics of the X2 distribution. The exponent 2 in x2 has
little significance beyond ensuring that the parameter is non-negative.

'4

*See [3) p. 66.
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The x2 probability function* Is defined by:

I x2

II

1
(X2 1V) 2v/"2 r(v/2) f2 (t)(v/ 2 )'l e't/2 dt

O~x~lv Zv/2r(v/2)

P(x2 1v) + Q(x2 1v) 1

Comparing this to the earlier-derived

P(k,z) -x(k,z) Zdx,
r(k) r(k) X=0

it is seen that the only differences are in the scaling of the parameters.
For let v = 2k. Then

22
1 x k-1 -t/2

P(x2 l2k) - f t e dt
2kr(k) 0

a '-t)k (ii e ,t/ dt
r(k- fo 2 d

Now let t - 2x, from which dt • 2dx. Replacing the variable of integration,

1 2 X*x2  k-1 -x

r(x) 2x-o

and it is seen that X2 - 2z properly scales the limit of integration.

When v - 2k is an ODD integer, two things happen. r(k) contains the
- (k-iZ) (k- 2), . .. (k -s)

factor 0 and ( does not terminate. The

behavior (accuracy) of the asymptotic expansion near z - k - s must be
i nvestigated.

*See [11 26.4 page 940.
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APPENDIX B

PROGRAM PLANNING - POISSON

1. INTRODUCTION. As a general rule, the only variable of observation
will be k, the nu-mnerof failures. The variable of integration will be x,
with z one of its extreme values (limits of integration).

It is necessary to define event in some suitable unit (time, distance,
mass, volume, etc.); e.g.', event - 4240 hours. Event often is synonymous with
Dur'ation of Test.

Many formulae of interest are greatly simplified if expressed as
functions of f(x) or of f(z). Thus

-x ke xf(x) a e -- ---

fx(x)

f"(x) "(KL" " 2k+ l) f(x)

-z k+i
.Pz e z (I 1, 2, 3, . . .=1 Ik + i

aT + T2 + T3 + + Ti +

T z f(z) and
S k1

T T-..L-T
j k+j J-i
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Also, 1 - P(z) = T + T + T + + T +

"T * f(z)
0

T =k' TJ+l z J

This latter series terminates when k a J.

For large values of z, compute f(z) by logarithms.

Ine f(z) - k lnez - Z - lnelk

Stirlinq's formula for Inelk is useful here. If k does not chanqe, it need be
computed but once.

2. COMPUTING L (z specified). Equations (4), (5), (9), (10) and (11).

Enter data

a o ye subroutine for zero failures

Compute In ek. (If k > 15, use Stirling's formula.)

Compute k In z - z.
e

k -7

Compute f17) - . • T

z
Compute L a fo f(x) dx from one of the methods in the previous paragraph.

f k > 15 and z < k, use L - Ik.+_
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3. COMPUTING z (L specified). To the above, add equations (6), (7) and
(13).

Enter data

k ys o? subroutine for zero failures

Subsequent portion of methQd assumes L > .
2

El Assign z 0  k +/

Label [

Apply method of paragraph 2 above to compute *L f o f(x) dx

Compute f (zo) * - - f(zo) and

bII

z 2(L - Li)
AZ- i.V- ; + f--zi"

IsA yes

~°°
mall end.

q,,

Assign z 1+1 = Zi+ Az

Return to Label
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4. COMPUTING prFT FSTIMATE OF THE FAILURE RATF (L specified.)

Enter data

S~yes
k o? Employ paraqraph 3, above.

wno

Assign s * k +
0

Label

Si
Compute f 0 f(x) dx by method of paraqraph 2 above.

Compute fl(si) "(-- i f(si)

k 1 - yes + assilqn a 0 f(si)

no

assign a * k - IF
0

Label LI

Compute f(aj) and fo(aj)

f(s 1 ) - f(aj)
Compute &a )f-(ai)

Compute and store aj+= ai + aa
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Sa no +Return to Label

a

Compute f f(x) dx by methods of paragraph 2 above.
0

a. -a k+i
f k > 15, ff(x) dx • a

The needed increment of area is
s aA a L - fo f(x) dx + f 0 f(x) dx

The approximating trapezoid yields (momentarily drooping subscripts for
convenience)

k(s -a)k - s

IsS&•ufftctent yes + end.

no
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An Efficient Method for Determining the 'A" and "BI Design Allowables

DONALD MEAL AND LUCIANO 8PIRIDGLIOZZI
Army Materials and Mechanics Research Center

Watertown, Massachusetts* USA

ABSTRACT

Suggested statistical procedures for obtaining material "A" and IS" allow-
ablee from both complete and censored samples are outlined in this paper. The
allowables represent a value determined from a specif Led probability of sur-
vival with a 950 confidence in the assertion. The survival probabilities are
.99 for the A6 allowables and .90 for the IS" allowables. Both parametric
and non-parametric statistical models are evaluated with respect to their
desirability in obtaining the allowables. Exploratory data analysis proce-
dures are introduced in order to determine acceptable distribution functions
for representing the data in addition to recognising outliers (bad data) or
multi-modality. Zt is demonstrated from a variety of materials test data that
allowable determinations require prior application of exploratory data analy-
sis procedures in order to assure acceptable results. The analysis also
provides a process for recognisin e*ither poor testing procedures oe inferior
material processing.

The two parameter WeLbull, normal, lognormal distribution functions are
the proposed statistical models tot computing the allowables (when non-
parametric methods are not applicable). They will usually provide an accept-
able range of possible allowable values. The Informative Quantile Function is
applied to the test data in order to select the function that best rqprseents
the data. In determining the allowables, the desirability of the Weibull
function application Is shown when limited number of probability ranked data
values are available in the primary region (lower ranked numbers) of
interest. The required conservatism in this region is satisfied while also
satisfying criteria for acceptability of the data representation. The exist-
enoe of multi-modality or gross outlierst in the data set, will in some
instances introduce excessively conservative estimates of the allowables when
the Weibull function is applied. If the multi-modality case Is a reality then
a suggested procedures using the Penalized Likelihood Method is used in con-
junction with Cramer Rao lower bound estimate for the 95t confidence values.

Extensive tables for samples sies (5(1)100) have been developed for
computing the allowables using the Weibull function. Use of the Monte Carlo
Method in conjunction with maximum likelihood (ML) relations describes the
procedure used in obtaining the necessary values in determining the allow-
ables. A simple computer code has been made available so that ML estimate of
weibull parameter can be determined thereby resulting in direct computation of
the allowables.

In order to demonstrate the desirability of the method, allowables have
been determined for Kevlar, Graphite, and Glass composite materials subjected
to shear, tensile, and compressive loads. Most of the test data was obtained
from the MIL-03Dli-17 (USA Army Materials and Mechanics Research Center)
project for composite material applications in aircraft structures.
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SIntroduction

The work described in this report is part of a continuing effort to
provide statistical procedures for determining the *A* and 023 allowables for
:•the Mo-RDBK-17 (Handbook for Composite Material in Aircraft Application).
The preparation of this handbook in a prime mission of the Army Materials and
Mechanics Research Center, Reliability Mechanics and Standardisation
Division. The current statistical procedures used in the MIL-HDBK-5 is not
considered applicable in the determinstion of the allovables for composite
materials.

The selection of an adequate statistical model (parametric or non-
parametric) for representing material strength data can result in either a

IN, conjectural approach or a costly test program. Often times the normal distri-
bution will be selected since the allowables can be readily determined from
tables. Most conventional tests for determining model acceptability will
rarely reject the normal function. unfortunately# selection of the normal
distribution can result in erroneous allowable estimates due to extrapolation
beyond the lower ordered test results. A quote from Rahn and Shapito (11

"*1 which says, 'Although many models might appear appropriate within the range of
the data, there might well be in error in range for which predictions are
desired,* adequately summarizes this important issue. This complicates the
issue with respect to allowable computations, therefore possibly requiring an
extreme value distribution representation which will compeneate for the uneer-
tainities in the lower tail region.

The non-parametric method is not realistic, for example, if an WA allow-
able were needed for a specific material, the 300 tests would be required.
This could result In an extremely costly test program, In that, control of
environment and the manufacturing process of composite material must be
precise.

In order to address the allowable computation problem more rigorouslyp the
authors have examined the relative merits -f 4 distinct distribution functions
including the Penalised Likelihood Method i23 for multi-modal case. Zn most
instances the 2 parameter Weibull function is recommended. This extreme value
function will usually provide acceptable estimates of the allowables. Either
precise, or slightly conservative estimates will be obtained. According the
"Freudenthal and Gumbel 13], the use of the Weibull distribution to represent
the distribution of the breaking strength of materials has been justified by
using extreme value theory. Zn order to recognise the most desirable
function, the authors examined the Root Mean lequence error (function vs.
ranked test data) in addition to the Informative Quantile (ZQ)iFunction (41
plots of the data. The IQ results provided an excellent description of test
data in terms of a specified distribution function.

In applying the Weibull distribution It is important to recognise data
with outliers in vicinity of higher ordered values In addition to multi-modal
behavior. Data contaminated in this manner will usually reduce accuracy in
the Weibull allowable computation. The Quantile Box Plot 131 was used in
determining outliers and multi-modality. This method proved to be more
reliable then the conventional robust procedures 16, 7, Sd ourrently being
suggested for determining outliers. If there is not a rationale for removing
outliers then they should remain in the data set, otherwise erroneous
estimates of the allowables will result. In the multi-modal case, careful
examination of test procedures and material processing should be made prior to
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acceptance of this phenomena. It is possible that in testing certain cour-
posits materials, bimodal behavior could occur. In exploring some recert test
results from hevlar, Graphite and Glass composites in addition to ceramic
materials resulted in occasional bimodality behavior. In most cases errors in
testing or materials conditioning and processing have accounted for this
situation,

The following robust method for applying explnratory procedures in the
examination of outliers was used primary as verification of the Quantile lox
Plot results, The methods singular advantage is that visual inspection is not

necessary in recognition ot, the outliers. The disadvantage results from
arbitrariness in selection of scale and the tuning constant. Zn some
instance* where a large amount of skewness or a small data sets exists, then
the Quantile Box Plot will be dispersion.

Robusatness Metho

The outliers are determined in a formal manner by applying a robust method
involving application of the ML estimation where the residuals are weighted in
a systematic manner. The computed weights describe the relative importance of
the data points, For example, a sero weight should indicate exclusion of a
point. The removal of outliers (bad data) will essentially define robust
data. The robust procedures applied in this paper involves using both the

a-estivAting technique of Ruber (6) and Andrews [7). initially the Euber
teuhnique is applied in order to determine a robust location parameter
weighted mean), The Andrew's function is then applied using location pare-

moter eastiuted from the luber result. It should be noted that this robust
method requires a uni-modal distribution of the data, therefore initial appli-
cation of the Quantile box Plot should be made inorder to establish uni-
modality.

IThe Euber m-estimation technique which iivolveu dWfining the likQlihood
funtion

N1 L_ f(Xt(1)

where f is a contaminated normal distribution,
.J1

Xi a datas
6 a location parameter and
N a sample $ise

by maximising log L (6 ) such that

*0, (2)

where f f'/f
A

then the solution of (2) is HL estimates of 6 designated as 0 . In order to
represent V in scale invariant form, equation (2) can be tewritten as
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I0

(3)
with d equal to the estimate of scale. The scale is often defined as

d w median I Xi - median (Xi)I /.6745
or simple M.A.D./.6745 (4)

This estimate is considerable more robust than using the complete samples
which oould result in poor coepresentation of the actual scale.

by solving

SW 1(C1-o) • 0

1.1 (5)

what*xe

, uIrl S c1
" sip (z) It > c1

1 is defined as the tuning constant and

An iterative process is then used in the solution of (5) such that when
the differences in WV become negligible therefore prov;iding the necessary
criteria for an acceptable solution for the 0 and Wi values. For c 1
1.345 the Huber's 0 function provides a 95t efficiency.

A
With estimate of 8 determined from the solution of (2) the iteration is

continuod where the -* function is now defined as

tf(*) -{afin(zr/cl): Irl ancl.0 rJ nfc1
(6)

This now function in called the Andrew's wave equation. in order to obtain
the desired robust data for this * function, the tuning was adjusted to
01 - 1.345 and the scale defined as in equation (4).

It should be noted that Andrew's function was selected for its ability to
describe outliers as data with essentially zero weights.
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4:1

Quantill Box Plot

I general description of the Quantile Box Plot is shown in Figure 1.
Where the quantile function is defined as

Q(u) F (u), 0 S US I (7)

that is, if the random variable x with distributJn function given by F(x),
teen the root of (x) 7 U, 0 S U 2 1 is the p quantile of F (x). From
the ordered statistic 1 • S .t. . , x , Q is defined as piece-
vise linear function with Lnte;val (0,1) dillded into 2n subintervals.
Therefore representing Q am

/21-

Zn order in interpolate

(9)

where 1a equals the sample slse.

The .box boundaries are defined as

Q (.25) to Q (.75)
Q (.1215) to Q (.675)
Q ( U0625) to Q (.9375)

The Quantile function Q (u) is useful for deteiting the presence of out-
lirea, modes and the existmlce of two populations. slat slots in Q(u)
indioete nodes. Sharp rsee isn Q(u) for u near 0 or 1 suggest outl-ers; sharp

rises in Q(u) within the boxes indicate the existence of two (or more) popu-
lations. The obvious bimodality shown in figure 2 is represented by the
Quantile box Plot displayed in figure 3. in figure 4 (lower ordered value)
the gross outlier is suggested by the extended vertical line at lower left
region of graph in figure 5. The results shown in figures (2, 3, 4, 5) are
not representative of typical data sets. In many instance multi-modality and
outliers are not obvious from routine examination of the data.
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Iigorm~tivo uotil '11L.Eunsckioi

The objective of the IQ fun-ttion (4) is to identify familar distribution
much as normal cr Weibull to which the statistical, ranked data belongs. This
method provides an accurate and simple approach to the problem of identifying
which function uthould represent the data. With the idientification completed
then more elaborate procedures are recommended inordor to provide verification
of the assumed model. If one of the conventional distribution cannot be
established as an acceptable model then the M~aximum Penalized Likelihood (I4PL)

* approach is suggested, The details of t4PL will be discussed later in the
text. Applications of the IQ method to a random selection of small sample
sines (N <50) from large sample of 300 has resulted in an accurate identi-
fication of the parent population distribution. Similar results were also

'Iobtained from larger samples of 1000 with samples of 25 and 50.

The Informative Qusittile Function is simply defined as

(10)

where Q(u) was previously defined in equation (8). An example of IQ vs U plot
for normal 4istribution in shown in figure (6). Note, at U w .02 the cor-
responding 1Q should be approximately -.8. The straight line joined at IQ of

* -.5 and .5# represents a uniform distribution. This is introduced in order to
provide for an easier identification of the unknown distribution. In figure
(7) the Weibull distribution is identified, where U n .04 and IQ - -.8.
figure (0) describes the form necessary for identiftying the exponential
distribution. By generating a not of IQ's and U's from equation (10) and
plotting these according to the figures, identification of the proper models
can be made.

Normal Distribution junction

1 c:, 1 12
(Z)J 0 1 dv

4 ~where: z UI

and x, Mx and ax are strength data, mean value and standard deviation
respectively. ?,x (an) can be simply and uAccurately evaluated using the
following polynomial representation,
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(12 4 5 6 16(:u .(.•.4 g * d: *d5  ** .1 (z)

where a (S) - 1.5 X zo0 (11)

and di * 049•067847

d2 U .0211410061

d3 a .0032776263

d4 = .0000380036

a .0000408906

d6 a .000005303

The lognormal 2 parameter distribution function in evaluated by using
Squation (11), where the maximum likelihood method estimates the mean (ex)
and standard deviation ( Fx

{ CXi•,2) -N( •, CX1),/) 2
and ;rX a

Xi a date values, # - sample nsie
S..,..,o, o ,.o.'1/2

The unbiased estimate ofa t o IN is q1 /2)
By defining X kn XI them

eiZ Weibull Distribution Vunotion

The HL method is applied in order to obtain the two parameters of the
Welbull function

f(X) (X)~ (13)
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The method requires defining the likelihood function[ 91

N X -

L ,N! T{I!(+-") exp [RM(14)

where Xi - data,

14, U =shape and mormaliting parameter and

3 u 8sample sise,
By solving the following log likelihood equations

L. L

-A w 0 and)

DL L (5

A A
determines and M and ii values.

Equation (15) must be solved in an iterative manner by using the computer
code listed in Appendix A. The unbiased m and U and their corresponding
"confidence intervals are obtained from Tables by [10).
It can be shown that:

cF r? ! U(ln (16

where aA or u3 a the allowable, depending on P*,,

P*n a tolerance limit on P*d (probability of survival) determined from
application of Nonte Carlo method. In Tables 1 and 2 the results for A and B
allowable and Pos computation is tabulated. Parametric determination of
three parameter and censored data requires a mote elaborate analysis. These
procedures will not be outlined in this text. The (A ) represents a biased
estimate.

Non-paranetric method. Non-parametic procedures 11] are usually more
desirable than parametric ones, since they provide the exact probabilities.
In the parametric case, the reliance is on an assumed distribution function
which provides extrapolated results for the probability of survival values.
The penalty for applying the non-parametric method is the need for relatively
large amounts of data (%.g., 29 values for the 0"3 allowable and 300 for the
*A* allowabli). The lowest ranked value describes the corresponding allow-
able. In the case where 100 data values are available, the sixth lowest
rankod data value determines the 5B" allowable. The use of 100 values in
obtaining the 030 allovabies prevents any erroneous estimates if lowest
ordered strength values are incorrect. Table 3 chows which ranked data value
should be used for a particular sample size. The importance of using sample
sies greater than the required 29 for the IB" allowable is shown in figure
9. For example, if All data is included, the allowable will be '4*1 however,
this could be erroneous if data value 4 was an outlier. By removing the
outlier, the allowable .@ 4.6.
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TABLE 1 P * VS. SAMPLE SIZE N FOR "A" ALLOWABLES

PS N PS* N PS* N Ps

5 .999999 29 .998214 53 .996816 77 .995970
6 .999992 30 ,998130 54 .996776 78 .995940
7 .999972 31 .998048 55 .996736 79 .995911
8 .999930 32 .997968 56 .996697 80 .995883
9 .999859 33 .997891 57 .996657 81 .995855

10 .999780 34 .997816 58 .996619 82 .995827
11 .999713 35 .997743 59 .996580 83 .995800
12 .999600 36 .997673 60 .996543 84 .995773
13 .999579 37 .997606 61 .996505 85 .995747
14 .999500 38 .997541 62 .996468 86 .995721
15 .999420 39 .997479 63 .996432 87 .995695
16 .999340 40 .997420 64 .996396 88 .995670
17 .999256 41 .997363 65 .996360 89 .995645
18 .999160 42 .997309 66 -996325 90 .995620
19 .999030 43 .997257 67 .996290 9i .995596
20 .998940 44 .997207 68 .996256 92 .995572
21 .998843 45 .997159 69 .996222 93 .995548
22 .998760 46 .997113 70 .996189 94 .995525
23 .998684 47 .997068 71 .996156 95 .995502
24 .998613 48 .997025 72 .996124 96 .995479
25 .998540 49 .996982 73 . 99 6692 97 .995456
26 .994463 50 .996940 74 .996061 98 .995434
27 .998382 51 .996898 75 .996030 99 .995412
28 .998298 52 .996857 76 .996000 100 .995390
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TABLE 2 PS* VS. SAMPLE SIZE N FOR "B" ALLOWABLES

5.0 .99860 29.0 .95991 53.0 .94499 77.0 .93884
-6.0 99783 30.0 .95930 54.0 .94468 78.0 .93861
'70 •99651 31.0 .95861 55.0 .94437 79.0 .93838
8.0 .99450 32.0 .95785 56.0 .94407 80.0 .93815

S9.0 .99170 33.0 .95703 57.0 .94377 81.0 .93792
10.0 .98900 34.0 .95617 58.0 .94349 82.0 .93769
11.0 .98716 33.0 .95528 59.0 .94321 83.0 .93747
12.0 .98540 36.0 .95438 60.0 .94293 84.0 .93724
13.0 .98287 37.0 .95349 61.0 .94267 85.0 .93702
14.0 .97992 38.0 .95261 62.0 .94241 86.0 .93680
15.0 .97720 39.0 .95178 63.0 .94215 87.0 .93658

* 16.0 .97517 40.0 .95100 64.0 .94190 88.0 .93636
17.0 .97358 41.0 .95029 65.0 .94165 89.0 .93614
1,8.0 .97200 42.0 .94963 66.0 .94140 90.0 .93593
19.0 .97013 43.0 .94904 67.0 .94116 91.0 .93572
20.0 .96820 44.0 .94850 68.0 .94092 92.0 .93552
21.0 .96653 45.0 .94800 69.0 .94069 93.0 .93531
22.0 .96514 46.0 .94755 70.0 .94045 94.0 .93511
23.0 .96400 47.0 .94712 71.0 .94022 95.0 .93492
24.0 .96306 48.0 .94673 72.0 .93999 96.0 .93472
25.0 .96228 49.0 .94636 73.0 .93976 97.0 .93454
26.0 .96161 50.0 .94600 74.0 .93953 98.0 .93435
27.0' .96102 51.0 .94566 75.0 .93930 99.0 .93417
28.0ý .96047 52.0 .94532 76.0 .93907 100.0 .93400
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TABLZ 3. Ranks, r, of observation, n, for an unknown distribution having
the probabi ty and confidenca-a- A aria B VAuds.

*1 aIi B Basis

.,.. •-9 J, .,.D r _n r_

300 1 29 1 321 24 1269 110
480 2 46 2 345 26 1376 120

630 3 12 3 368 28 1483 130
760 4 76 4 391 30 1590 140
920 5 19 1 413 32 1696 220

1050 6 103 6 436 34 1803 230
1190 7 116 7 459 36 1909 170

1320 8 129 1 481 38 2015 1480
1450 9 142 9 504 40 2120 190
1570 10 154 10 560 45 2230 200
2700 17 167 11 615 s0 2330 210
1820 12 179 12 671 55 2430 220
1950 13 191 13 726 60 2530 230
2070 14 203 14 781 65 2630 240
2190 15215 15 636 70 2730 250
2310 16 227 16 890 75 2830 260
2430 17 239 17 945 so 2930 270
2550 is 231 is 999 85 3000 277
2670 19 263 19 1053 1,90
2790 20 275 20 1107 45

2910 21 298 22 1.161 100

*'I
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SjMulti-Noality. Xfthe bimodality displayed in figures It 2, and 3 is a
reality, not the result, procesLng or testing errors then the Current avail-
able parametric procedures usually vill not provide acceptable representation
of the data. A non-parametric method 12] Is suggested having excellent
approximation properties, for estimating an unknown probability density
function from a random sample X1 , . . . , XN

The estimator optimises a criterion function which combines the maximum
likelihood principle and a penalty term for smooth (i.e., not bumpy) behavior.
The criterion function is a discrete approximation to

N r f12 2
L(f) a T XMi O(Id f~j) dt

t0 dt2 (17)

where f(t) is any probability density funationy that is, f(t) is nonnegative
and Lntergrates to 1. Uquivulently, we may maximise the Ln(L(f)] which
separates Into two terms - a log likelihood plus a log penalty torn.

The penalty to= contains an unknown positive constant a which doter-
mines the amount of moothness In the resulting easLmator. Values of 0 that
are "too small' result in bumpy estimates while a "too large' overamooths.
in practice, use an a as mall as possible without introducing excesilve
bumps. Several values of a that differ by factor* of ten should be tried and
graphically displayed and compared to a histogram or parametric assumption.

NumerLcal integration determines the cumulative density values
(probability of survival) fot the prescribe percentile, 90 or 99 depending on
the desLred allowable.

Confidence limit on these estimates say 1.90 or a~p, can be determine
from the Cramer-lao lower bound which determine the variance on R. The con-
fidence limit L is determined iteratively from

L* -it - UI (L - 1) L a 2p 3...
bi -i *(16)

whereUY is the y percentage point (950) of the normal distribution.

initially, Ll = R - Uy(V)]h

where, V() = (ln R)2 11.109 - .514 In (-l. a)+ .608 (ln (-ln A)2)/n

Subsequent Lnteration in equation 16 requires substitution of Li for i in
* equation 19.

Poolina of Data. In obtaining the allowable*, test data should be ob-
tained from a number manufacturers (e.g. composite materials from various
aixcraft industry representativea). All teat data should be pooled Lnorder to
obtain an allowable consistent with a general population of that specific
materials strength values. If a significant difference exist among the *anu-
factucer then an Inveatigation should be made regarding the cause of this
situation. The tests recommended for determining significant differences are

1 the conventional t or Nann-Whitney Test and two non-parametric tests for the
K - ample cose. The Kruakal-WallIg (12 multi-sample test foe identical
populations is applied such that 9 is corrected fot ties. The null hypothesis
(identical populations) is rejected at the 20 level. The other distribution
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"free test, is the Jonckhoere's(121 I sample trends test against the ordered
alternative. Where ties are resoved by applying a randomization process. The
null hypothesis of randoweass is rejected at the 2t level, that is, acceptance
"of difference in populations at this level.

% Statistical Evaluation of Data (Graphical DisplaY). In Figure 4, a plot
of probability failure (Pf) versus failure stress (see marked circles) of

* empirical failure data were shown. The Pf values were determined from the
Rj ranking. The four candidate functions are listed on the graph with their
corresponding line form representations. In addition to obtaining a visual
inspeotion of beat fit, the RN6 error provides a quantitative evaluation for
the three rankings and the density functions. The sample evaluation for the
three ranuings and the density functions. The sample means and standard
deviations are tabulated with their corresponding 90t confidence interval.

>1 The weibull shape and normalizing (Char. value) parameters are tabulated with
.2 confidence intervals. The 99% origin represents one percent probability of

failure with 95% lover confidence limit for that number. This representation
is the A allowable. If one wants to increase or decrease origin percentage,
it can be done by applying methods described in (2). The word *origin' will
equal sero if two parameter Weibull function was considered, otherwise, three
parameter Welbull function was used. In the radical parameter tabulation, A,
3 and C are coefficients obtained from a least squared fit routine. Exp 8 (N)
and Uxp C (I) are the corresponding exponents determined in the fitting of the
data. Sig I and Sig 7 are the two out-off points. That is, the smallest and
largest projected values determined by the function.

In applying the robust procedures, It is important to have a rationale for
ignoring the determined outlier' otherwise, erroneous estimates of survival
probability computations could result. The robust schem can be applied to
data from relatively small sine specimens, where errors in machining, testing,
etc., greatly effect strength determination. The authors have noted consider-
able improvement in ceramic material failure predictions of large specimens
(13 in 3 ) from knowledge of small specimen (.03125 in 3 ) strength results
when the outliers are removed from the original data. Non-paramntrics solu-
tions, are applied to the code (see Figure 4), can provide information regard-
ing confidence levelis for A and S allowables, with respect to the number of
data points. The code can be altered to include other allowables by using the
simple relationships outlined in (11). In the last three boxes the allowable
estimates are tabulated for the Weibull, normal and logno.rmal functions.

.esults and Discussion

in figure 4, the results of tension tests on Kevlar composite material
(Kexcel Co.) are shown, they are similar for all three functions. This is an
ideal situation, since selecting allowables from any of the functions will
provide acceptable results. Zn figure 9, the results from another manu-
facturer using Mexoel "aterial are shown. The PIs error indicates the Weibull
funtion would be an acceptable representation of data. In figure 9a, a IQ
plot of data from figure 9 test results also indicates data should be repre-
sented by a Weibull function. The results shown in figure 10, describe the
existence of an outlier at highest ordered value. See figure 11 display of
Box Plot for verification of outlier value (26.5). It is obvious from figure
10 that Weibull function does not represent lower tail region particularly
well. The resultant design "B" allowable of 10.9 determined from Weibull
computation differ@ from non-parameter solution by 2.1 a 19% difference. The
"&A allowable result, Weibull vs. normal is different by 2.1. Since the

221



non-parametric result is an accurate measure then the Weibull function has
produced an error of approximately 190 for at least the OB* allowable and
possible more for the OAO allowable. In figure 12, the outlier has been
removed from the data displayed in figure 10. Note the substantial increase
in the Neibull shape parameter from 5.66 to 7.22 by removing one outlier
(highest ordered value). These results indicate need for exploring data prior
to applying functional representation. If the outlier actually exists, then
allowable obtained from normal distribution should be considered. Deter-
mination of acceptable Weibull parameters from the ML method depends on the
absence of outliers at highest ordered values. Since the vulnerability of the
ML method has been exposed in the above example, it suggested that the Best
Linear Unbiased Estimate procedure also be used in order to determine the
Weibull parameters, thereby providing flexibility in the selection of para-
meter estimating procedures.

Figure 13 describes the statistical results from compression tests on
Revlar material obtained from the three manufacturers. In figure 14, the
results from pooling original three manufacturers data, with a forth manu-
facturer (submitted data at a later date). An approximate 6t reduction in
allowable estimate with addition of the forth data set. The are two fund-
amental issues involved one is the need for a substantial number of manu-
facturers participating in the allowables computation program and secondly the
possible reliance on an extreme value type (Weibull) distribution in order to
introduce conservatism when accounting for the uncertainties existing from a
limited number of pooled samples in representing the population.

The Kruskal-Wallis test for determining K - sample difference indicated
the forth monufaoturer data differed significantly from the other samples at
.01 levels. At present, the KIL-HDSK-17 recommends pooling all samples unless
a rationale has been established for removal of sample.

Even though, homogeneous data is not available for determining allowables,
the committee considers it more important to represent the difference among
manufacturers, particularily so for composite materials.

In figure 15, the higher ordered values appeared to be from a different
mode of failure. The Box Plot example shown in figure 1 is a display of this
"data which essentially confirms the existence of bimodality. It should be
noted in figure 15 that none of the candidate functions adequately represent
the ranked data. The allowables are too conservative, particularly for the
Weibull and normal representative. A suggested alternative in determining
allowables for this data is the Maximum Penalised Likelihood Method[ 21

described in the text. The results are shown in this figure are an excellent
representation of the ranked data including the sizable bump. The allowables
of 5.04 ksi for the SAO and 5.51 ksi for the OD". The "BO allowable agrees
within .5% of the non-parametric solution. At present, the authors consider
this the most acceptable method for determining ailowables where multi-
modality exists in the data. Examination of other methods, such as oonsid-
aring upper mode as censored data or application of the mixed Weibull distri-
butions to the data, proved to be inadequate. The later method may have merit
if selected percentiles of the distribution are matched with the corresponding
"ranked values in a manner that guaranteed a good fit. In figure 16 another
example of bimodality is shown. In this c.ase, representation of Weibull shape
parameter value of 6.75 is extremely low. The results from MPL method are
also shown in the figure including tabulation of the allowables. Manufacturer
of this material has recently indicated that lower mode data was incorrectly
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added to upper mode data due to different autoolaves used in processing of
mterial.

Figure 17 shows the results from Tension test on Kevlar material (Cycom
Co.). The allowable computations differ by at most 7? for the three
functional representations. Allowables determined from normal computation
would be selected for this material and test.

Figure 18, shown data evaluation of Composite graphite material. Theexiatance of bimodality displayed in the sample was a common occurance among
several of the graphite test samples.

,223

-w •.`` . • •`' •.`• .• •`.• . .``•`• . `•• ,,.-... ., *.~ - K V > .-.. ,: : . *,...... .... .,v.. ... ~... ... .. . * . ., ,*



Iwo

.0.4

- e € Z-- • .,-

bi fam o
go-

_ IR

o,'

z fa 40 M 
"0a' 

a'

Wl 0U at 49~ a0

'41

00
kCa

,"4

-est Aalable Cop

23 W

'4J

% JJ

41

'41

LA

BetAalbeCP

224S4



E-4

4 .J

,.

- - I

0)

-4 4
,!..

Best Available Cop,,

22 5



*~2 1 ~ q

'U CD - ~i~ w m

if IL
r- 0 0 a AC 0emfu wL

-~~ cbA . a3?0

~~xf 9- LO rin

lef as-4

wGz aw- I -' 5 5 5-

EC'- a 0, 4L.4Q i
a 0 41. 3e

in A-g UI0i Cm(, a %

4-4
(n]
Q)

an 41

r4 0; 1zfl
.0

0

'-4

49 -

ca 4 . .4-)

CC

C6- (A --

73es Avalabl Cop



c• ® IV -a• ov4' ________________

-4i - -t W
q II

-.. .... *...I ..

""a"t" r.4  I1

* --ij'.++:
- uI I•

-~~4 04 - ~ 8

... 1,....,>

W ttv tA

A IL ULOX-O

6A ul w u 0

• ,4 *w

IU~C 0 IA - &I . 4

~~~~~r CD IIm - ~ ~ z ~

4'I,-- *,+

LIJ UU

Best Avxai C

ni t'~~ IAU~2 J+*gA• C

j 00

c z

0, 
v

-JJ

- IAto
Lu L w

olA

Ix =
CL

CC

LI.-
Vr

0u
0 03

Best Available Ccw-



S t"' iit
'-I-

Sf V

V ..

0 . .. . .

I'm ,,,.m . .

n "40 E O*°

010

cc -M -

7 ---.

:c all,

III-

____ ____ __ ____ __ _ _ .___._ -•

.2

o-•°••- o• -3o• Best Available Copy



no -a H I
-* H �

Iiiii
Zg

p.isr-n V

�:- L1  I
- *6� .4 .�I�E! 0 �

E � .- � F.
-h -

a *
-� I em

- -t

I. 0 0
E

qqa * aaan

a -
I -

- �a a

*; :: m.� o� U
-. �' �h a1  Z

� �I �
-4

V

b-..I C)

B-. 4� a
- an

-- 4

4.)

�4J

w

anan .4
w

an -4

I! A: 0i� �¾1 00



2~9 oI J(m 0J

Cz

.4 4

~t*EU4J

A. 1

o -4

-4j

a.I

a)J ~E-4

oul ~C~,L4

M4

BesAaiabl Co)



n -. -- - - - - - - -- - -- -- --

IV j

CI 10at X H
aI- a b F

0 1 A FAO 0I

gg -e a a o *', s

0 oat 0
I W~e- a 04

lzz

-4

1 ~41

IA

Ot-4

Bec~t vailabe-Cop



J J i i..Iwo
A am

m0 b . . . It tv a 0

OZJ

k In°

C6 
a 

-%.

-go-

.40 

us 0 

~ s 4 - q

a w

hi 
:i ON of 

wI 
~ . U

L._

0

-. 4

"03 ,.. ag4.."I -k. .

0 4-

4t4 

-4JU)

O00 
_0

.4 ' ' -440

Best/vf\beo

f 

,~



Conclusion

1. Kxploratory Data Procedure should be applied prior to acceptan:e of
statistical model used in the allowable computation.

2. Quantile Box Plot provides an excellent summary of test data reisults
in addition to location outliers and multi-modality in tvhe sample.

3. The authors recommend using the Weibull distribution function for
obtaining the allowables, if outliers (higher ordered values) o:t
"m'dti-modality, do not exist in data set.

.4 4. An extreme value distribution (Weibull) provides a degree of security
If. poolae samples do not represent general data population. (a
commeon occurrence).

5. Nov.rml distribution is recommended for allowable computation if
outliers exist in data set at upper tail region.

6. In multi-modality case, the Maximum Penalized Likelihood Method
is suggested for the allowable determination.

7. At present the authors reco-mmend pooling all samples made available
even though significant difference test indicated otherwise. If
a sample contains modality then this data set would be excluded.

8. The development uf tables 1 and 2 required a considerable amount
of effort (most complete tabulation for the Weibull function). With
the aid of computer code listed in appendix A and tabulated P* values,
the reader should be able to obtain a simple and accurate comfutation
of the allowables when the Weibull function is considered.

9. Non-parametric procedures are always the most desirable in obtaining the
"allowables for the given sample if properly applied.

10. A sufficiently large number of sources in obteining test data is more
"impc-tant in determining allowables than size of individual sample.
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C WKIDULL PARAMETERS M AND U

C a ~ ~ e, es - - - -- - - - - - ------

c READS IN AMOUNT OF DATA AND THE DATA
c I

DIMENSION T(200)
IMPLICIT DOUBLE PRECISION (A-HPO-Z)
RIAD(5u)HPTS <m------------------- sample size
READ(591)(T(I)v I101NPTS) ----- Dt

C -%

C DETERMINES M BY MAXIMUM LIKELIHOOD
C

A0000

DA8140
2 XNUM8O00

XMINUlaoso
PROD 1OQ.O
PROD2. * 0
AwA+DA

C
C IUMATIONS CALCULATED FIRST
C

00 10 ZwPNPTU
XNLDMaT (I **A+XNUt1
XMZNU~mT(Z)V*A*LOO(T(Z) )4XMINU8

10 PRtOD2wLOO(T(I))+PROD2
AI'NPTS*XNUM/ (NPTS*XMINUS-XNUM*PROD2)
IF(A-A1)2v5v3

3 NwN+1
IF(N'!)4r4F5

4 AwA-DA
DAUI ./10.**N
AmA-DA
00 TO 2

5 W1RITE(6v1)A <-------

C DETERMINKI U 'HATP
C

ISUM0O.0
DO 6 1.2 uNPTS

6 #SUMwT(Z)**A+bSUM
1w(1#/NPTS*I4SUM)**(1*/A)

V WRITE(6v1)9 ---------
I FORMAT(

END

Appendix A Computer Code for Determining Weibull Parameteirs
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CHOICE OF RESPONSE SURFACE DESIGN

AND ALPHABETIC OPTIMALITY '
George E. P. Box

UNIVERSITY OF WISCONSIN - MADISON

MATHEMATICS RESEARCH CENTER

ABSTRACT

It is arquod that the specification of problems of experimental design

(and in particular, of response surface design) should depend on scientific

curiLtoxt. The upecification for a widely developed theory of "alphabetic

optimality" for response surfacs applications is analyzed and found to be

unduly limiting. Ways in which designs might be chosen to satisfy a set of

criteria of greater scientific relevance are suggested. Detailed considera-

tion is given to regions of operability and interest, to the design information

function, to sensitivity of criteria to size and shape of the region, and to

the offoct of bias. Problems are discussed of checking for lack of fit,

sequential assembly, orthogonal blocking, estimation of error, estimation of

transformations, robustness to bad values, using minimum numbers of points,

and employing simple data patterns.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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•• Choice of Response Surface Design and Alphabetic Optimality

George Z6 Pe box

University of Wisconsin - Madison

1s ZNTRODUCTZON

There seems no doubt that of all the activities in which the

statistician can engage, that of designing experimenta is by far the most

Important* since it is here that the actual mode of generation of scientific

data is decideod

The Importance of practice in guiding the development of the theory of

experimental design (45) is clearly soon from the time of its invention.

risher was engaged by Russell [163 on a temporary basis at Rothuasted

Experimental Station in 1919 Oto examine our data and elicit further

information that we had missed." Records were available from the ongoing

Broadbalk experiment in which particular combinations of fertilisers had been

consistently applied to 13 plots for a period of almost 70 years, In his

analysis ((221, [24))# Fisher attempted to relate yield to fertilLser

combination, to weather, and in particular, to rainfall. The method he used

was multiple regression with distributed lag models, involving an ingenious

employment of orthogonal polynomials which led to important advances in the

theory of regression analysis, and in particular its distribution theory,

Sponsorod by the United States Army under Contract No. DAAG29-80-C-0041.
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With only the crudest of computational aide, the work must have been

burdensome, making it all the more frustrating to discover that, however

ingenious the analysis, the inherent nature of the data ensured that the

answers to many questions were inaccessible. A comprehension of the logical

problems in drawing conclusions from such analyses led naturally to

speculation on how some of the difficulties might be overcome by appropriate

,dwiliii * 'io,.:;,. idhoiwi weir's l' rL.hur . I.inulatrcid by Utu Andlysis of Variance,

which Filithr intr(xluced in 1923 with w.A. Mackenzie (231 for the elucidation

of what was clearly a most unsatisfactory design which he had had no part in

choosing. Thereafter, an Fisher gradually acquired more influence in the

setting up of field trials, the principles of replication# randomisation and

their application to randomised blocks, latin squares and factorial designs

quickly evolved out of the actual planning, running, and analysis of a series

of experimental designs of increasing complexity and beauty.

The practical conatext of scientific experimentation continued to

produce important theoretical advances when Yates came to Rothameted in 1931,

leading in particular to important developments in the design and analysis of

complex factorial designs and their associated systems of confounding ((44),

[46)) and to the introduction of incomplete block designs.

My own experience with experimental design began during the Second

world War. I worked at the Chemical Defense Experimental Station in England

with a group of medical research workers who were attempting, using animals

and volunteers, to find ways to combat the effects of poison gas and other

toxic agents. At this time it was believed that these agents might be used

not only aainst the military, but also against the civilian population. It

was important therefore that our work should progress as rapidly as

possible. I found myself a part of evolving investigations which employed
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sequences of experiments which I designed and whose natiir;e needed to 'Adapt W

ohanging needs at different stages of the study. The deptigns employed were

randcomized blocks, balanced incomplete blocks, latin squares, and

factorials. Ldter, during my eight years as a statistician with Imperial

Chemical Industries, my role was again as a member of various scientific teams

tackling evolving problems',with sequences of designs. Many of the problems

were Pimilar to those I had previously encountered, and again employed the (by

now) standard designs of Fisher and Yates. However, some investigations

directly concerned with the improvement of chemical processes at the lab,

pilot plant, and full scale, seemed to require additional methods, which

however, still drew an the fundamental principles laid down by the originators

of experimental design. This led to the development of what has come to be

called response surface methodology. See for example (4), (14), 015), (301,

(31), and (391.

Suppose some response n of interest is believed to be locally

approximated by a polynomial of low degree in k continuous experimental

variables X - (Xis X2, ... , (P)'. To fit such a function we need appropriate

experimental designs. Let us call a design suitable for estimating a general

polynomial of degree d a dth order design in k variables. Thus a design.

suitable for fitting the function

2 2B0 +, 0 XI + 0 2x2 + 0 11XI + 0 22 X 2 + l •XIX2

would be a second order design in two variables.

One route for choosing such designs, which has generated an enormous

amount of mathematical renearch over the last twenty or so years, we shall

rotor to as the "alphabetic optimality" approach, For reasons I will explin,
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I have reservations about the usefulness of this approach so far as response

surface designs are concerned. For completeness, a brief summary of some of

the main ideas are set out below ((32), (3,]0, 134], (35]1, 36], (42], (43]).

2. SOME ASPECTS OF OPTIMAL DESIGN THEORY

POR CONTINUOUS EXPERIMENTAL VARIABLES

Consider a response n which to supposad to be an exactly known

function n - x1A linear in p coefficients U, where

X (fW(X), f 2(X), #*Of f(X))' is a vector of p functions of k experimental

variables X. Suppose a design is to be run defining n sets of k experimental

conditions given by the n x k design matrix {X ) and yielding n observations

(y), so that

_ ui- !x. (u s 1, 2, ... , n)

where yu - 11 a 9 is distributed N(,o2 ) and the n x p matrix X - (•x.
u U _U

The elements of ({c) - (X'X)"' are proportional to the variances and

covariances of the least squares estimates B. Within this specification* the
"prohlem of experimental design is that of choosing the design (X ) so that

.U
the elements oij are to our liking. Because there are 14*p(p~l) of these,

simplification is desirable.

A motivation for 0..mplification is provided by considering the

confidenc:e region1 for 0

1 Obviously there a,' also parallel fiducial and Esayesian rationalizations.
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P (I - 0)'X'X(I - ) - constant

defining an ellipsoid in p parameters. The eigenvalues Xl, 03. ""A ) of
-1 2P

(X'X)-1 are preportional to the squared lengths of the p principal axen of

this ellipsoid. Suppose their maximum, arithmetic mean, and geometric mean

are indicated by X ma , and X. Then it is illuminating to consider the

'S transformation of the y p(p+l) elements. oi. to a corresponding number of

items as followst

(i) D - JXIX i- p (so that D 1 /2 . jp/2 is proportiona. to

the volume of the confidence ellipsoid).

(ii) N1o a vector of p - 1 homogeneous functions of degree sero in

the A's, which measure the non-spherioity or state of ill-

conditioning of the ellipsoid. In partioular we night choose, for

two of these, H1 .- /A and H a A /a , both of which would2 max

take the value unity for a spherical region.

S(iii) l/Jp(p-1) independent direction cosines which determine the

orientation of the orthoVonal axes of the ellipsoid.

It ts traditionally assumed that the 1/4p(p-1) elements concerned with

orientation of the ellipsoid are of no Interest, and attention has been

concentrated on particular criteria which measure in some way or another the

mises of the eigonvalues, measuring som combination of miss and sphericity of

the confidence ellipsoid. Among these criteria are

Dm -Ix'xl -iv m; -P-

-1 ..2A a EX w tr(X'X) E'var' pH

3 - ma x ( A i 4 H 2
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The desirability of a design, as measured by the D, A, and E criteria,

increases as A, ,H1, and AH2 respectively, are decreased. But in practical

situations, eoch of thoee criteria will take smaller and hence more desirable

values as the ranges for the experimental variables X are taken larger and

larger. To cope with this problem it is usually assumed that the experimental

variables Xu may vary only within some exactly known region in the space of

X, but not outside it. I will call this permissible region RO.

Another characteristic of the problem which makes its study

mathematically difficult is the necessary discreteness of the number of runs

which can be made at any given location. In a technically brilliant paper

(37), Kiefer and Wolfowits dealt with this obstacle by introducing a

continuous design measure 4 which determines the proportion of runs which

should ideally be made at each of a number of points in thc X space.
U

Realisable designs which most nearly approximated the optimal distributLon

could then be uised in practice.

A further important result of Kiefer and Wolfowits linked the problem

of estimating I with that of estimating the response n via the property of

*G-optimality.0 0-optimal designa were defined as those which minimixed the
A

maximum value of V(y ) within RO. The authors were then able to show, for
K --

their measure designs, the equivalence of G- and D-optiuality. Furthermore,

they showed that, for such a design, within the region RO, the maximum value

of n.Var(yx )/02 was p, and that this value was actually attained at each of

the design points.

For illustration we consider a second order measure-design in two

variablesj that is, a design appropriate for the fitting of the second degree

polynumial of equation (1). Such a design which ts both D- and G- optimal for

a square region RU with vertices (:1,.kl) was given by |'edorov 1211 (see
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also Herzberg (273). The design places 14.6% of the measure at each of the

tour vertices, 8.0% at each of the midpoints of the edges, and 9.6% at the

origin. The design is set out in Figure 4(b).

While this approach haa generated much interesting mathematics, it does

not, I believe, solve the problem of choosing good response surface designs.

In the hope of stimulating pew initiative, I have set out below what I believe

is the scientif Li context for reusponse 4urt ce st.idies and indicated some

possible linen of development.

3. THE R&SPONS, SURFACE CONTEXT,

es an example suppose it is desired to study some chemical system, with

the object of obtaining a higher value for a response n such as yield which

is initially belitvod to be some function n - g(X) of k continuous input

variablbe X a (X11X21...,k) such as reaction time, temperattre, or

concentratieo, hs is illustrated in Figure 1, it is usuaLly known initially

that the system can be operated at some point X0 in the space of X and Is

expeuted to be capable of operating over some much more oxtensive region

O called the ar ablity region, which2 however is usually unknown o:r poorly

known. Response eurface methods are employed when the nature of the true

response function n - g(X) is also unknown 3 or Is inaccessible.

2 One secondary object of the investigation may be to find out more about the
operability region 0.
3 oeasionally the true functional form n - g(ý) may be known, or at leasL
conjootured, from knowledge of phy3ical machanisms. Typically however g(,)
will then appear as a solution of a set of differential equations which are
"nonlinear in a number oL parameters which may represent physical constants.
Problems of nonlinear experimental design then arise which are of uonside'able
intureut Alth•uuiyl thesy Iheve received comparatively little atteaition (Heu ro"
example (131, (10), (251).
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A.¸

Aof

0
__ II I_ | J

Figure 1. The ourrent region of interest R and the
region of operability 0 in the space of
two continuous experizental variables X
and X2 .
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Supposo that over somke (typically much less extensive) immediate reyon

of interest R In the neighborhood of X it is guessed that a "graduating"

function, such as a dth degree polynomial in x,
I& x'8

**11

nX .

might jrovide a locally adequate approximation to the true function

Ii A (x) where as before x is a p-dimensional vector of suitably

tr.tnsformad input variables x'1 (f 1 (X,f(WxI,,.,460 x)},), and I0 is a vector

of coefficients occurring linearly that may be adjusted to approximate the

unknown true response function nX a g(X). Then progress may be achieved by

using a sequence of such approximations. For example when a first degree

polynoani.al approximation could be employed it might, via the method of

stempest ascent, be used to find a new region of interest R1 where, may. the

yield was higher. Also a maximum in many variables is often represented by

some rather uomplioated ridge system4 and a second degree polynomial

approximation when suitably analysed might be used to elucidate, describe, and

exploit such a system.

Thus we are typically involved in using a sequence of designs, each

making uve of information gleaned from earlier experiments -- a characteristic

typical of A much wider field of scientific Investigation. This provides the

4
Knpirtcal evidence suggests this, Also, intei:eation of sets of differentiAl

equatLons which describe the kinetics of chamicalo systems almost invariably
leads to ridge systems ([4), (15), (261, (41)). See also the discussion of
IPimure H.
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opportunity to progressively improve not only the objective function rn

directly, but also the mode of gathering information about it. For example,

at the ith stage, a design performed in a region R imay suggest that a new
__ -i

region R. is 4orthy of investigation (either because it can be expected to

give higher values of n jr because it may throw light on other important

aspects o! the function). But this new region may be different not only in

(a) its location in the space of X, but Wb) in its shape also (for instance

because of information fed back from previous data on transformations of

X's individually or jointly), and (c) in the identity of its component space

(because of feedback from the results theAselves, indicating that certain

variables should be dropped, and/or that new variables should be added). Thus

in any realistic view of the process of investigation the dimensions,

identity, location and metrics of measurement of regions of interest in the

experimental space are all iteratively evolving. The prob)-u of choosing

suitable experimental designs in such a context is a diffCu..%t one. Some

properties (I5S, [8]) of a response surface design, any, all or some of which

might in different circumstances be of importance in the above context are

given in Table 1.

The design information function

Associated with requirements (1) and (2) of Table 1, consider the

design variance function (11)

)/O2 -1
Vx M noVar(y )/ - nx'(X'X) x

or equivalently the Information Function

IX 
V X
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11q

The desin should:
(I) generate a satisfactacy distribution. of Information thrughout the region of

interest, 2;
(i1) swum fthat helftted value at x. (s) beas slowe"possibleto tho true value atx,

(l11) give good detectability of laock of 6t;
(1r) allow transformation, to be estimated;

*(v) allow cxperiments to be performedt in blocks;
(vi) allow designs of Increasing order to be buiUh up sequentilfly;
(vii) provide an internal estivaste of error;
(viii) bo insensitive to wild observations and to vlolatloin of the usual normal theory

assumptions;
(Ix) require.a minimum niumber of experimential points;
(z) provide simple data patterns that allow ready visual 6pprecIation;
(XI) ensure simplicity of calculation;
(zii) behave well when errors occur In tho settngs of the predictor variables, the x's;
(xiii) not require an impreatieally large number of predictor variable )evals;
(xiv) provide a check on tite *const ancy of variance' assuamption.

TABLE I1. SOMIE ATTRIBUTES OF DESIGNS OF POTENTIAL IMPRTp4NCE

..

2.48

"4.'I
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It is evident that if we were to make the unrealistic assumption (made in

alphabetic optimality) that the graduating function n - x10 is capable of

exactly representing the true function g(X) , then the information function

would tell us all we could know about the design's ability to estimate n.

For illustration, information functions and associated information contours

for a 22 factorial used as 'a first order design and for a 32 factorial used as

a second order deign are shown in Pigures 2 and 3, for standard variables XI

and X2 .

4. APPLICABILITY OF ALPHABETIC OPTIMALITY

The information function for redorov's second order D/G-optimal design

over the permissible RO ragion (.1,*1), referred to earlier, is shown in

Figure 4. For illustration, this is related to the two experimental variables

X1 0 temp in OC and X2 t time in hours. Thus, in this particular example,

X1 (x1 - 180)/10, X - 4 and the RO reyion would permit

experimentation within the limits X, - 170 - 190 6C and X - 3 - 5 hours,

but not outside these limits. In thi response surface context a number of

questions arise concerning the appropriateness of the specification set out in

Section 2 of this paper for alphabetic optimality. These concern

(i) Formulation in terms of the Kd region

(ii) Distribution of information over a wider region

(Uii) Sensitivity of criteria to size and shape of the RO region

(iv) Ignoring of bias.
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0*

!'±gure 2(a) Information surface for a 22 factorial used
as a first order design.
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2.X

X2.0

-2 -1 0. 1. 2.

Figur*e 2(b) information contouars for a 22 factorial. used
an a first oxd~r glosign.
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Figure 3(a) Information surfaoe for a 32 factorial used as a
second order design.
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Figure 3(b) Information contours fox 3 2 factorial used as
a second order design.
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information function for a
second order D/G-opt~1ua design
within the tQ region
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Formulation in terms of the RO region

As has been pointed out, in response surface studies it is typically

true that at any given stage of an investigation the current region of

interest R is much smaller than the region of operability 0 whicn r s, in any

case, usually unknown. In particular, it is obvious that this must be so for

any investigation in which we allow the possibility that results of one design

may allow progress to a different unexplored region. Consequently I believe

that formulation in terms of an RO region which assumes that R and 0 are

identical is artificial and limiting. In particular, to obtain a good

approximation within R one may very well wish to put som experimental
....... &

points outside R and so long as they are within 0 there is no practical

reason why we should not. Also since typically Rt is only vaguely known, we

will want to consider the information function over a wider region, as is done

for example in Figure 5 for Fedorov's second order D-optimal design. The

information function for this design may now be compared over this wider

region with that for the 32 factorial in Figure 3.

DisLribution of information over a wider region

In the response surface context, the coefficients 0 of a graduating

"function nX L xO acting as they do merely as adjustments to a kind of

mathematical french curve are not usually of individual interest except

insofar as they afEect n, in which case only the G-optimality criterion among

those considered is of direct interest. For response surface studies however,

it in far from clear how desirable is the property of G-optimality itself.
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Figurs 5. ZntorwAtion
functioni for a second
order D/G-@ptizsal designIi. over a wider region.
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For instance, the profiles of Figure 6 made by taking sections ot the

surfaces of Figure 3 and Figure 5 suggest that neither the G/D-opcimal design

nor the 32 design are universally superior one to the other* In some

subregions one design in slightly better, and Ln others the othar design is

slightly better. Both information functiona, And particularly that of th3

G/D-optimal design, show a',tendency to sag in the middle. This happens for

the G/U-optimal dQsign becaun' the 0-optimality characteristic guarantees that

(maximixed) minima for I , each equal to l/p, occur at every design point,

which must include the center point. However* this sagging information

pattern of the second order design i& not of course a characteristic of the

first order design of Figure 2 which is also D/0-optimal bmt contains no

center point. If the idea of the desirability ot designs possessing a

particular kind of information profile is basic, then it seems unsatisfactory

that the nature of that profile should depend so very huch on the order of the

design. Indeed, the relevance of the minimax criterion which produces 0-

optimality ts arguable. It follows from the Kiefer-Wolfowits theorem that a

second order design for the (1ial) region whose information function did not

sag in the middle would necessarily not be D-optimal. But as we have seen, D-

optimality is only one of many single-valued criteria that might be used in

attempts to describe some important characteristic of the X'X matrix. Others

for example would be A-optimality and Z-optimality, and these would yield

different information profiles. But I would argue that since the information

function itself is the most direct measure of desirability so far as the

single issue of variance properties is concerned, our best course is to choose
our design directly by picking a suitable information function, and not

indirectly by finding some extremam for A, E, D, or other .rbltLrary criterion.
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* Frig=re 6. Profiles of
I for the second

oidor D/G-optimal
6lsiqn and for the

hk 3 factorial design.
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Sensitivity of criteria to size and shape

In the process of scientific investigation, the investigator and the

statistician must do a great deal of guesswork. In matching the region of

interest R and the degree of complexity of the approximating function, they

must try Uo take into account, for example, that a more flex'ble second degree

approximating polynomial can be expected to be adequate over a laryer region

k than a f.irst detgrue approximation. Obviously different experimenters would

have different ideas of appropriate locations and ranges for experimental

variables. In particulav, ranges could easily differ from one experimenter to

5another by a factor of two or more . In view of this, extreme sensitivity of

A6

design criteria to scaling is disturbing6 . For example, suppose each

dimension of a dth order experimental design is increased7 by a factor c. Then

the D criterion is increased by a factor of oq where

95

Over a sequence of designs, initial had choices of scale and location would
tend to be corrected, of course.

6 in particular, designs can only he fairly compared If they are first scaled
to be of the "same size." But how is mine to be measured? It was suggested
in (14) that designs should be judge as being of the same size when their
marginal second momenta E(xiu - R ) /n were identical. This convention is
not entirely satisfactory, but wilY of course give very different results from
those which assume design points to be all included in the same region RO. It
is Important to be aware that the apparent superiority of one design over
another wil often disappear if the method of scaling the design Is changed.

N In particular this applies to comparisons such as those made by Nalimov et al
[401 and Lucas (38).

7 A measure of efficiency of a design criterion (see for example (3), [17)) ip
0nltivatud by considering the ratio of the number of runs necessary to achieve

tho optimal design to the number of runs required for the suboptimal design to
obtain the same value of the criterion (supposing fractional numbers of runs
to be allowed). In particular for the D criterion, this meastire of D-
efficiuncy is (W/De0t)1/k . &Luivalently here, to illustrate scale
"sensitivity, we congentrate attention on the factor c by which each scale
would need to be inflated to achieve thn same value of the D criterion.
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2k (k+d)I
q a

(k÷+ ) I ,- )

Equivalently a contidence region of the same volume ds that for a D-optimal

dessin can be achieved for a design of given D value by increasing the scale.

for each variable by a factor of c - (D0 p/t/D) thus increasinq the volume

ooptoccupied by the design in the X= spare, by e factor -k (Dopt/D)k/(1. F'or

exampla the D value for the 32 fActorial design of Pigarn 3 iq 0.90 Y 10"2 1.1

nompared with a D value of 1.14 x 10"2 for the D-optimal deaiiqn. For (k - 2,

d - 2), we find q - 16, and c a (1.14/0*98)1/16 a 1.009. Thus the Rame value

of 0 (the same volume of a confidence region for the Pa') as is obtained for

the D-optimal design would be obtained from a 32 design if each side of the

square region were increased by leas than 1%. Equivalently, the area of the

region would be increased by less than 2%. Oning the scaling that was usedi in

Viiurv 4 Cur iLlumtration, we mlhuuld have tu ulitay• t|t tdintLpur-itur-t by

20.18 *C Instead of 20 '1C, and the time by two hour. and one minute instuai ot

two hours, for the 32 factorial to give the same D value 4s the D/G-optimal

design. Obviously no exporimenter can guess to anything approaching this

accuracy what are suitable ranges over which to vary these Efctors.

Obviously choice of region and choice of information function Or*

closely interlinked. For example, &L- siet of N - k+l points in k-mpace which

have no ooplanarities is obviously a D-optimal first order design for Hoine

ellipsoidal region. Purthermore the Lnformation function for d demin of

order d ti a smooth function whose harmonic average ovmr the n exp)rtment.l

points (which can presumably be reyarded as repr)esentatLve of the r-(jUion of

Namely for that region enclosed within the information contour Ix 1/p

which mumt L)4!-,; throUr.1h all the k+1 experimental t points.
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interost) is always 1/p wherever we place the points. Thus the probl mi ,f

,.! design is not so much a question of choosing the desiqn to increaie cotal

information As.npreading the total information around in the nan.,or desired.

% Rotatable Designs

A route for simplication different from alphabetic optimality occurs

* when, after suitablei transformation of the inputs X to standardized

* :variables x nothing is known about the orientation in the X space of the

response surface we wish to study. It was argued by Box and Hunter [11] that

we should then employ designs having the property that the variance of y isA..-"

a function only of 0 - I 'X)12 so that

V - and I -I-- X P X P

_•* For a first order design, rotatability implies orthogonality and vice

versa, and completely decides the information function. For second and higher

order designs, a requirement of rotatability fixes many moment properties of

%• the demign, but V and hence I are still to some oxtent at our choice, and

can be changed by changing certain moment ratios [11). In particular, for a

second order design, V depends on the single moment ratio

"" a (n/3)1 4 /(EX1 . oPr illustration, Figure 7 shows the information

function for a second order rotatable design with A - .75 consisting of 8

points arranged in a regulLr octagon with 4 points at the center.

The truth ue5%ms to be that at any particular phdse of an investiqation

"the 4s.Iertific decLLon that i.cut contributes to the outcome of thdt ph-dsit It.

Sthe choice of the current region of interest (involving choice of variables,

"_'I .4 LI):,"Iti.firvi, ratup! ioid 1,4 trantiorif14tt~onf4) -- this is a1 choLrst th~it douan no.t

£ really involve statistics. After this decision is made, (and given the

Ai assumption that, the model fits ptrfectly so that on~ly the variance properties
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Fioure 7(s) information function 'for a second order rotatable design
consisting of 8 points on a circle plus 4 center points.
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Fiue7(b) Information contours for the same design.
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of the design are of interost) any set of experiments that cover this resjion

in some reasonably uniform way is likely to do quite well. I cannot sen that

the various optimality criteria are particularly relevant to this choice,

althouUh there would certainly be no harm in considering them, together with

many other factors briefly discussed later.

Nijnorinj of bias

All models are wrony; some models are useful. This aphorism is

particularly true for empirical functions such as polynomials that make no

claim to do more than locally graduate the true function. For chemical

oxaiaples some idea of the adequacy of such approximations can be gained by

studying surfaces produced by chemical kinetic models. An examples taken from

(101 is shown in Figure 8. See also (15).

One conclumion I reached from many such studies was that approximations

would not need to be very good for response surface methods to work. Thus

within region A of Figure 8 the locally monotonic function could be crudely

approximated by a plane which could indicate a useful path of ascent. Also

valuable information might be obtained about a ridge such as that in region B,

even though the underlying surface was not exactly quadratic. Notice howevex

'2•

8 This surface was generated (see (101 for details) by considering the yield

k k

of the product B in a consecutive reaction -Z48--C following first order

kinetics with temperature sensitivity given by the Arrhenius relation

In ki ; In I + Oi/T, where temperature T is measured in degrees Kelvin,
using plausible values for the constants atl, 012 , , e 2.
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REACTION M11E (H=81S

Figure 8. Contours of a theoretical response'surface in reaction
tim~e and reaction temperature for a first'order ccnascutive
reaction,. with plAusible values substituted for kinetic
constants.
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that in the light oF such examples any theory of experimental design which

depended on the exactness of such approximations should be regarded with some

skepticism.

5. TAKING ACCOUNT OF BIAS

If y n x10 is the fitted value using the empirical approximation, then

its total error C in

y - (y (y)) + ((y) - )

C - y + C B

Thus the error C contains a random part £ and a systematic, or bias, part

CV
C B,0 and we muut uxpLsct that C will not be negligible. Since all the theory

*! previously discussed makes the assumption that CB is zero, we must consider

whether the resulting designs are robust to this kind of discrepancy. The

optimality criteria discussed earlier which assume the response function to be

exact usually produce a substantial proportion of experimental points on the

boundary (if 1W0. In the contotxt of possibla bias, this is not reausuring,

uinee it LN at these points thdt the approximating function will be most

sLrairbouj.

The explicit recognition that bias will certainly be present does

however seem to provide a more rational means for approaching the scaling

1v ,problem ((61, [71). To see this, consider again the formulation given earlier

in Lerms of a region et interest R and a larger region 0 of operability. if

we w~iroe to asume (unrealistically) that the approximation remained exact
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however widely the points were spread, and if some measure of variance

reduction were the only consideration, then to obtain most accurate estimation

within R, the size of the design would have to be increased to the ooundaries

of the operability region O. but in fact of course the wider the points were

spread, the less applicable would be the approximating function, and the

bigger the bias error. Thi* suggests that we should seek restriction of the

spread of the experimental points not by artificial limitation to some region

RO, but by balancing off the competing requirements of variance on the one

hand, which is reduced as the spread of the points is increased, and bias on

the other hand, which is increased as the spread of the points is increased.
A

The man square error associated with estimating nT by y

standardized for the number, n, of design points and the error variance a2

can be written as the sum of a variance component and a squared bias component

2 2 2 2 22

or

X - VX B .

For illustration, an example is taken from a forthcoining book with N.R.

Draper and J.S. Hunter 110). Figure 9 shows a situation as it might exist for

a single variable when a straight line approximating function is to be used.

The diagram shows what might be the true underlying function which would of

course be obscured by experimental error. Suppose the region of interest R

is scaled so that -X0 < X < X0 and in particular consider the two designs

(a) (-2/3, 0, 2/3) and (b) (-4/3, 0, 4/3).

One way (6) to obtain overall measures of variance and squared bias

over any specified region of interest R is by averaging V and over

R to provide the quantities
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V- JRVX/fRdX and B . fRaxdX/fRdX
V -fR-f

Denoting the integrated (over R) mean square error by 4, we can then write

M V +.

For the previous example, V, B, and M are plotted against X 0  in Figure 10.

We see how V becomes vory large if the spread of the design is made very

small, while if the design is made very large, V slowly approaches its minimum

value of unity. The average squared bias B, on the other hand, has a minimum

value when x0  is aboat 0.7, and increases for larger or smaller designs. A

rather flat minimum for M - V + 8 occurs near X0 a 0.79. Thus in this manner

the design which minimizen average mean squared error 14 is not very different

from the design which miniizses average squared bias B, but is extremely

different from that wnioh minimizes average variance V.

Choice of alternative model

A difficulty in all this is that in practice we do not know the nature

"of the true function nX. Progress may be made however by supposing that

nX is t.. some satisfactory approximation represented by a polynomial model of

higher degree d 2 . Suppose then that a polynomial model of degree d, is fitted

to n data values to give

A

'4 
,

while the true model is in fact a polynomial of degree d 2, so that

We also need to know something about the relative magnitudes of

systematic and random errors that we could expect to meet in practical

cases. It was argued in (6) that an investigator might typically employ a
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fitted approximating function such an a straight line when he believed that

the average departure from the truth induced by this approximating function

was no worse than that induced by the process of fitting. This would suggest

that the experimenter would tend to choose the size of his region R, and the

degree of his approximating function in such a way that the integrated random

error and the integrated sy~tesatic error were about equaj. Thus we might

* suppose that a sit'iation of particulAr interest is that where B is roughly

equal to V. Examples that we studied seemed to show that designs that

minimised N with the constraint V a B were close to those which minimized B.

Consequently we suggested that, if a simplification were to be made in the

design problem, it might almost be better to ignore the effects of sampling

variation rather than those of bias.

However this may be, there seems no doubt that, in making a table of

useful designs, a component in our thinking should be the charaoteristic of

the designs which minimised equated bias against feared alternatives. he a

factor in our final choice, this should certainly receive as much attention as

the indications supplied by, say, D-optimality.

For illustration particular examples of designs in three dimensions

which minimise integrated squared bias when R is a sphere of unit radius are

shown in Figure 11(a) for dI - I and d. w 2 (a first order design robust to

second order effects) and in Figure 11(b) for di - 2 and d2 - 3 (a second

order design robust to third order effects). The former is the familiar 23

factorial scaled so that the points are 0.71 units from the center. The

latter is a rotatable composite design with "cube" points at a distance 0.86

from the center, and "star" points at a distance 0.83 from the center.
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* Figre11(a) A first order (two-level factorial)
design in three factors which minimizse

-,.:

squared bias from second order terms
when the region of interest is a uphere
of unit radius.

212

9... ""-I '-:• •,.". •• •',-'- -- :.--.".- . .' . -- . . :: ..



--- a--C

TOdW

-I

'I I

.G4

a;. o- .. oi49 -

-•-r

Figure 11(b) A second order, composite rotatable design which
n• ~ minimizes sq~uared bias from third order ter~ms

when the weight function is uniform over a
• ~spherical region of interest of unit: radius.
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Vigre 12 Two possible weight functions for k I s

(a) "Uniform over R" type indicating uniform
interest over R, no interest outside Rs
(b) Normal Distribution shape, giving greater
weight to points nearer P.
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• - Obviously in practice because of the inevitable inexactness of

choosing scales exact dimensions of the designs should not he taken too

seriously, but these examples illustrate the fact that as soon as we take

account of bias, design points are not chosen on the boundary of R.

Choice of designs which minimize nias

Before considering the problem of choosing minimum bias designs it is

desirable to generalizo slightly the previous formulation. Although it avoids

limiting the location of the design points in an artificial way the idea of a

region of interest R within a larger operability region 0 is still not

entirely satisfactory because it implies that we have equal interest at all

points within R. 4 more general formulation [7] which subsumes that we have

been discussing employs a weight function w(x) which extends over the

operability region 0 so that foWlxldx - I. The weighted mean square error M

can now be split into a weighted variance part V and a weighted squared bias

* part B so that again M - V + B, with

"4

4-f 2
M f w(x)E(y(x) - i(xl) dx

V "f W(X)E(y(x) - E(y(x))) dXo - -
a 2. - foW(XI{E(y(X) - n(x)) dx

Two possible weight functions for k - 1 [20] are shown in Figure 12.

Suppose as before the fitted function is a polynomial Xlb of

degree d , while the true model is a polynomial X,. + X 8 of degree d2

and define moment matrices for the design and for the weight function by
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.~~ ~~ Ml n-xx1 M2 n-xx X.

;-1 -112

. Jow(X)x'dx, f w(x)xx.d.

Then (6) a necessary and sufficient condition for the squared bias B to be

minimized is that

M-1 -1'MMI .16•2 ý11 2

and hence a sufficient condition is that all the moments of the design up to

and including order di + d2 , are equal to all the correeponding moments of the

weight function.

6a SOME OTHER CONSIDERATIONS IN DESIGN CHOICE

There is insufficient space to discuss here all of the items in Table 1

that, in one ctrcumstance or another, it might he necessary to take into

account, but mention will be made of a few.

* Lack of Fit (iii), Sequential Assembly (vi), Blocking (vLEstimation

of Error (vii), Transformation Estimation (iv)

While the adequacy of 3 particular approximating function to explore a

region of current interest is always to some extent a matter of guesswork,

* simple approximations requiring fewer runs for their elucidation will usually

be preferred to rmore complicated ones. This leads to a stLategy of building

up from simpler models, rather th.i, *Iwn fL"11 more complicated ones. A
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practical procedure is then: to employ the simplest approximating Eunction

which it is hoped may be adequate, to allow for checking its adequacy of fit

(see also (1), (21, (6], and 119])I to switch to a more elaborate

approximating function when this appears necessary. The implication for

designs is (a) that they should provide for checking model adequacy, (b) that

they should be capable of sequential assembly -- a design of order d should be

augmentable to one of order d + 1, 1,c) since conditions may change slightly

from one net of runs to another, especially affecting level, the pieces of the

"design should form orthogonal blocks.

For illustration, Figure 13 shows the sequential assembly of a design

"arranged in three orthogonal blocks, each of six runs, labeled I, II, and III.

Block I is a first order design but also provides a check fo~r overall

curvature (obtained by contrasting the average response of the center points

with the average response on the cube). A single contrast of the center

response is available as a gross check on previous information about

-ex imental error. If after analysing the results from Block I there are

doubts about the adequacy of a first degree polynomial model, Block II may be

performed. It uses the complementary simplex, and the two parts together form

a first order design (I+II) with much greater ability to detect lack of fit

due to second order teems provided by additional orthogonal contrasts

estimating the two-factor interactions. The addition of Block III produces a

composite design (l+I1+1II) whicn allows a full second degree approximating

equation to be fitted if this appears to be desirable. The complete design

also provides orthogonal checking contrasts for lack of quadraticity in each

of the three directions ((91, (12]). These contrasts can aloo be regarded as

oheckinqj the need for transformation in each of the X's. Finally if it were
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decided that more information about experimental error was desirable, the

replication of the star in a further Block IV could furnish this, and also

provide some increase in the robustness of the design to wild observations.

Robustness

Approaches to the robust design of experiments have been recently

reviewed by Herzberg (2811 see also (29). In particular, Box and Draper (8)

suggested that the effects of wild observations could be minimized by making
r - Er2  small, where R - (rtu} - X(X'x)-I X. This is equivalent to

2 2minimizing Er - p /n - Var(V(y)} which takes the value zero whenuu

-
V(y ) - p/n (u . 1,2,...,n). Thus G-optimal designs are optimally robust in

this sense.

Size of the experimental design

A good experimental design is one which focuses experimental effort on

what is judged important in the particular current experimental context.

Suppose that, in addition to estimating the p parameters of the assumed

model form, it is concluded that f • 0 contrasts are needed to check

adequacy of fit, b - 0 further contrasts for blocking, and that an estimate

of experimental error is needed having e A 0 degrees of freedom. To obtain

independent estimates of all items of interest we then require a design
-. 4

containing at least p + f + b + e runs. However the importance of checking

fit, blocking, and obtaining an independent estimate of error will differ in

different circumstances, and the minimum value of n will thus correspondingly
2 .differ. But this minimum design will in any case only he adequate if a ts
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balow some critical value. when a is larger designs larger than the

minimum design will be needed to obtain estimates of sufficient precision. In

this circumstance rather than merely replicate the minimum design, opportunity

may be taken to employ a higher order design allowing the fitting of a more

elaborate approximating function which can then cover a wider experimental

region. Notice that even"when 02 is small designs for which n is larger

than p are not necessarily wasteful* This depends on whether the additional

"degrees of freedom are genuinely used to achieve the experimenter's current

," objectives.

Simple Data Patterns

It has sometimes been argued that we may as well choose points randomly

to cover the *design region* or employ some algorithm that distributes them

evenly even though this does not result in a simple data pattern such as is

achieved by factorials and composite response surface designs. In favor of

this idea it has been urged that the fitting of a function by least squares to

a haphazard set of points is no longer a problem for modern computational

devices. This in true, but overlooks an important attribute of designs which

form simple patterns. The statistician's task as a member of a scientific

team is a dual one, involving inductive criticism and deductive estimation.

The latter involves deducing in the light of the data the consequences of

given assumptions (estimating the fitted function), and this can certainly be

done with haphazard designs. But the former involves the question (a) of what

function should be fitted in the Cirit place, and (b) of how to examine
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"residuals from the fitted function in an attempt to understand deviat' ns from

the initial model, in particular in relation to the independent viriables, and

so to be led to appropriate model modification.

Desiqns such as factorials and composite response surface designs

"employ patterns of experimental points that allow many such comparisons to be

made, both for the original observations and for the residuals from any fitted

function. F~or example, consider a 32 factorial design used to elucidate the

Setficts of temnpe.ratuce and concentration on some response such as yield.

Intelligent inductive criticism is greatly enhanced by the possibility of

being able to plot the original data and residuals against temperature for

each individual level of concentration, and against concentration for each

individual level of temperature.

7. CONCLUSION

(i) We must look for good design criteria whiuh moasure

characteristics of the experimental arrangement in which the scientist might

sensioly be interested. Because the irA4 .rtance of various characteristics

will differ in different situations, tables of such criteria for particular

"designs would encourage good judgment to be used in matching the design to the
44

scientific context. Optimum levels of these criteria cAn be useful as bench

marks in judging the efficiencies of a particular design with respect to thnse
_-"I

various criteria.

(ii) However good designs must in practice be good compromises, and it

is doubtful how useful single criterion optimal designs are in locating such

compromises. An optimal design is represented by a point in the multi

dimensional space of the coordinates of the design and a series of dLfferent
.*4
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criteria will give a series of such extremai points which can be very

"differently located. Obviously knowledge of the location of such extrema may

tell us almost nothing about the location of good compromises. For this we

would need to study the joint behaviour of the criterion functions at levels

*' close to their extremal values. One limited but useful step would be to

further ipvestigate which crit6ria are in accord, (such as G-optimality and

robustness to wild observations) and which in conflict (such as variance and

bias).

(iti) It is true that the problem of experimental design is full of

scientific arbitrariness -- no two investigators would choose the same

variables, start their experiments in the same place, change variables over

the same regions, and so on -- but science works not by uniqueness but by

employing iterative techniques which tend to converge. Clearly we must learn

Wo live with sacentific arbitrariness, or else we are in a world of make

believe. But we can make the problems worse, not better, by introduciny

arbitrariness for purely mathematical reasons.
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AMBUSHED BY A LURKING VARIABLE

BarryAt Bot*
Jerry Thomas

0 USA Ballistic Research Laboratory

> In the formal study of design and analysis of experiments, it is ofte'a overlooked that a
simple and straight-forward design can become complicated during analysis. Presented here is a
specifi case in which the design was readily apparent but where diffiulties subsequently arose.
Analysis, plagued by nonhomogeneity of variance arxd the suspicion of a lurking variable, is dis-
cussed.

INTRODUJCTION

Answers to questions concerning the performance of a MLRS (Multiple Launcher Rocket
System) bomblet were desired. The M42 is a small shaped-charge bomblet'((guret1),? designed
to detonate on impact causing a Jet, comprised primarily of copper, to penetrate the armor
which it has impacted. Many bomblets are placed within a time-fused rocket, which is flown
owr the target area. A charge within the rocket is ignited, causing the skin of the rocket to peel
away. This allows the undetonated bomblets to be sprayed over the target area; as the bomblets
fall to the ground: a portion of them will impact the target. (

DESIGN

There were three questions about the performance of this munition to be answered.
Frst, is there a difference in bomblet performame among vendors?, In this study, performance
of the bomblet was taken to be penetration depth of the jet into the target. This question is
self-explanatory and we will only note that there were three vendors considered. Second, does
the dispersing process have an effect on bomblet performance? Dispersing is the process by
which the bomblets are delivered from the rocket to the target. In particular, the customer was
concerned with the ignition of the charge within the rocket which causes the skin of the rocket
to peel away. When this charge is ignited, the bomblets are subjected to a certain amount of
force. The above question then becomes how does this force affect bomblet performance. In
order to answer this question, one half of the bomblets went through the dispersing simulation
before testing for penetration depth. Third, how does Standoff affect bomblet performance?
Stardoff is the distance above the target at which the bomblet is detonated. The customer was
interested in bomblet performance where detonation occurs at four different heights above the
target.

To answer these questions, an experimental design was developed (figure 2). A 2x3x4
factorial design with response, Penetration Depth, and with factors, Dispensing, Vendor, and
Stardoff was chosen. In consideration of available bomblets, six observations per cell were
used. This design was then suggested to the customer who then contracted a third party to run
the experiment.
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ANALYSIS

"In examining the data, irregularities in the values caused us concan with respect to the
usual model assumptions of normality, homogeneity of variance, and additivity. Prior to per-
forming an analysis of variance, testing of those assumptions was begun. To test for normality,
a Shapiro-Wilk test was run on the observations within ealls. At the .05 uinificance level we
found the results not inconsistent with the assumption of nonrality. Turning then to the ques-
dton of homogeneity of variance, a plot (figure 3) of the cell means against the cell varianrces
was constructed. When examining this graph, it was fairly obvious that conditions were
somewhat less than ideal. Various corrective measures using the common transformations were
unsuccessful in obtaining homogeneity of variance. Thus, efforts were begun to determine the
cause of heterogeneity of variance.

A more critical look at the data revealed that within many of the cells representing disper-
sed bomblets there seemed to be two populations of data, a group of high values arid a group of
low values. Sub.jctively we flagged the lower values. Graphically (figum 4) we compared the
means of the lower values and the means of the higher values within a Biven cell. On the plot,
"the symbol at the approximate coordinates (.75,.75) represents the mean of the lower values
from vendor I at the first standoff. Noting the obvious difference between the mean of the
lower and upper values within a given cell, we began to feel that maybe there were in fact two
populations of data. It was at this point that we first suspected the existence of a lurking vais-
ble.

Tn in mid-stream we were asked to look at the effect of a new variable, Darnage, which Is a

measure of 'out of round' of the bomblet. It was previously conjectured that the dispersing
process may affect bomblet performance. Damage was an attempt at a more precise explanation
of the possible effect of dispersing. In explaining how this me&',rement was taken, it is reces-
miry that the testing sequence and apparatus first be described. First, bomblets are disarmed
"and, noting each boniblet position, loaded into a rocket-like canister comprised of five
bomblet-holdin packs (figure 5). The dispersing simulation involves exploding a charge within
the canister causing bomblets to be sprayed over the test area. The bomblets are then gathered
and measured for Damage, which is the absolute difference of two perpendicular measurenents
of bomblet diameter. After this simulation, the bomblets are armed and detonated at various
heights over a plate of armor for the penetration depth data. Looking at this variable, Damage,
led us to find our lurking variable.:'-4

Investigation of Damage brought out the following observations. First, those bomblets
positioned in packs one and two during the dispersing simulation sustained a higher level of
Damage than did those positioned in packs three through five. Second, those bomblets poal.
toned in packs one and two during the dispersing simulation showed poorer penetration than
did those in packs three through five. Third, high levels of Damage sustained by the bomblets
adversely affected penetration performance. These observations are supported graphically by
representative figures 6 and 7.

In figure 6, the symbol at the approximate coordinmtes (I.,3.75) represents the mean
* ~Dwnage sustained by bomblets, positioned in pack one during the dispersing simulation and

then fired at the 7.72 inch standoff. The symbol at the approximate coordinates (.,.)
represents the mean penetration depth achieved by those same bombletL Note that in each
g'aph the highest level of Damage is sustained by bomblets from pack one and! that the level of
damage decreases for bombleta from higher packs. Also the lowest mean penetration depth is
exhibited by bomblets from pack one and generally increases for bombieta from higher packs.
The apparent relationship between Damage and Penetration Depth was impormnt, but not
totally unexpemted, More interesting and more important was the relationship of Pack to both
Damage and Penetration Depth.
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At one point early iD. Ce analysis we fh&ed bomblegs showing loW pWMMdon depths
n possibly coming from a different population The relationship between Pack and those
"penetration depths being flaged is pointed out further in fiSure 8. Of fburmen bombleta poei-
tioned in pack one during the dispersing simulation, eleven were iaggd fMr low penetraadon.
Of fifteen bomblets positioned in pack two, nine were flagged for low penetration. Finally, of
twenty seven bomblets flided, twenty had been positioned in packs one or two during the
dispersing simulation. Due to its unexpected effect on bomblot performance, Pack was dter-
mined to be our lurking variable.

Why did Pack have an effect on pernwntion depth? One possibility was proposed by a
systems analyst familiar with MLRS munitiorn. In figuen S, nova that steel plates were bolted
to the top of pack five and to the bottom of yAck one. Rather Ohau being suspended in air, the
teat apparatus rested on the ground. When the charp within the oautisr ws ignited, the shell
of the canister, the bomblets, and the soeal plate on pack &i we blown out away from the
center of the canister. The bottom steel plate remained stationary, pinmnd by the fCon of the
explosion and ho ground. Many bombles ftrom the low packs caromed oft this hard fixed
surface, causing more severe deflormation to tharnmelve,.

COJVCWSION

In conclusion, some information, not addresd here, could still be extracd from these
experimental data, but problems created by the lurking variable hindered the Intended complete
analys. It Is interesting to note that heterogeneity or variance played a hero's role in this
analysis since invosdaption of this problem aided In the dWsver of the lurking variable, Pack.
Also, proper design made it possible to draw some conclusions in the fhoe of unexpected cir-
cuMntalesL Finally, as suggested by Professor G.E.P. Box during this pssntattion, this exum-
"pie illustrates that statisical analysis out accomplish much more than hypotheels testng by len-
ding irsight to the physical environment, in this case by poindtn out possible Inadequacies in
the test apparmwi
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The i: ) of Pox-Jenkins Methodology in rt)recasting DARCOM's

Central Procurement Workload

Charles A. Correia

Q \Army Materiel Systems Analysis Activity
Army Procurement Research Office

Fort Lee, Virginia 23801

ABSTRACr. This paper addresses the development of a time series model to
forecast the central procurement workload in the U.S. Army Materiel Development
and Readiness Command (DARCOM). The Iox-Jenkins approach of Identification,
Estimation and Diagnostic Checking is used to build a seasonal auto-regressive
integrated moving average model (SARIMA) to forecast quarterly procurement
actions (QPA), the procurement workload indicator. Models are developed using
60 and 61 data points from FY 65 through FY 79 to include 7T. Forecasted values
are compared to actual values for FY 80, 81 and 82.

I. Introduction. The user of the Box-Jenkins methodology for time series

forecasting is required to exercise judgment in the choice of a particular

inxiel from a general class of autoregressive integrated moving average (ARIMA) models

(I-¢]B - 42B2 - ... - pBp) (I-B)d Xt =

(I-01B - 02B2 - ... - 0g3q) It

where t has mean zero, fixed variance and It and cu uncorrelated for t~u

and B is the backshift operator defined as Bmxt = Xt-m.

For seasonal time series of period s the model is generalized to

(1-41B - D 2 B2 _ -. _ Bp)(I-l Bs  - ... - Cp .sBPss)(l-B)d(l-Bs)dsXt

= (1-oIB - .- qB )(I-O1,sB B - .- s8,Bqss) t

The task is to selecL a specific model from the general class by choosing

appropriate values for p, d, and q. These values are determined by examining

the sample autocorrelations and partial autocorrelations. The coefficients D

and Oare estimated by a nrnnlinear optimization algorithm and the residuals of

the proper fitted model should resemble the properties of a white noise process.

The computeL program used for deter-mining the optimal parameter values is a

FOff.P1?NJ prcxjram called ERSF, Estimation of Rational Distributed Log Structural

Fri'm rl'ye].;, develoFped by K. D. Wall, School of [.:ngineering, University of Virginia.
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11. Ylcxiel ILevelo;Tw~nt.

Models are developed using 60 and 61 data points from FY 65 through FY 79

to include 7W. One nmodel is fitted for 60 points arnd two for 61 rx)int.s. The

correlugran of both series indicate non-stationarity and seasonality as shown

in figure L.
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Figure 1. Aut-lorrelatioris of Oriainal oata

Forecasted values are cxxupared to actual values for F'Y 80, 81, and 82.

The mean absolute percentage error (MAPE) is used as a measure, of forecast

acctwacy rather than the mean' squared error (MSE). The MAPE has a more intuitive

interpretation than the MSF, and hence more understandable to non-statisticians.
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A. Wbel I

The f irsi iidel addressed is fitted to 60 data points. When a seasonal

fourth difference is taken the correlagram in figure 2 resilts, showinq tm)

autocokrelations significantly different from zero, r] and r 2 . An MA(2), ARMA

(1,1) and AR(M) were then fittve] with only the residuals of the AR(1) exhibiting

the characteristics of a white noise process. The autocorrelation of the

residuals of the following model

.(-B 4 ) (1-0.67205H) Xt t

is shown in figure 3. These appear to be random and hence possibly a correct model

for forecasting purposes.
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B. Model II

The 7w n ata fint (the quarter which occurred when the fiscal year was

changed from 1 July - 30 June to 1 Oct - 30 Sept) was added to the time series

and a new moel was fitted. A first difference was taken and a seasonmp

parameter added resulting in the correlogr3 of figure 4. The pattern of the

"2 ~ autocorrelations is that of an MA(3), The autocorrelations of the residuals of
-0

.' the model

:• (1-B) (l-0'51982B4 ) Xt = (I'0*2895B-O*I3664B 2 
- 0"60893B3 ) 1't

" ~are sh~wn in figure 5. Although the autocorrelations of the residuals are all

S within one standard error a trend still appears to exist since rI through r 13

-• are a]l p-ositive. This tr-end caused som~e doubt as to whether t3,e residuals
S were truly• ran~k~fn, aird so a third model was attempted.
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In an attempt to eliminate the trend of model 2 a fourth difference

instead of the first difference, is taken but the seasonal parameter along with

the three moving average terms bre kept. This resulted in the correlogram of

figure 6. When a fourth moving average term is added, the autocorrelations of

the residuals exhibit a random pattern am shown in figure 7. The resulting

model is

(1-B 4 )(1-0.601628 4 ) Xt a (1+0.81815B + 0.87187B2
tt

+ 0.66825B3 
- 0.29190B4 ) ct

" III. Conclusion

The three models along with their forecasts are ooua~ ed to the actual

Svalues for fiscal years 1980, 1981 and 1982, in tables 1, 2 and 3. -Tta mean

absolute percentage error for model 2 is the lowest. The forecasts from model

2 were chosen to predict future workload beck in fiscal year 1979.
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Table 1

Performance of Model I

WWUkl1- I (1-84) (1-0.67205B) Yt Y C

FY'80 FY'81

SX)RECA Pc ACTUAL PEC FORECAST ACTUAL PE

ist Qtr 23,322 27,455 15.05 22,784 29,455 22.65

2nd Qtr 35,210 35,034 .50 35,572 34,938 1.81

3rd Qtr 40,198 36,864 9.04 39,955 37,182 7.46
• ,. 4th Qtr 40,721 36,562 11.38 40,884 38,802 5.36

- 4tYAL 139,451 1.35,915 139,195 140,377

"FY 82
-.

F.ORECASM ACrUAL PE

1st Qtr 22,674 30,330 25.24

2nd Qtr 35,646 35,040 1.73

3rd Otr 39,905 41,282 3.34

"4th Qtr 40,918 45,739 10.54

'WYrAL 139,143 153,194

MAPE - 9.50

4'
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rable 2

Perfcrmance of Model 2

M~j:L~ (I-B) (1-0.51982B 4 ) Yt=(I.0.2895B - 0.13664B2 - 0.60893B3 ) Ct

FY'80 FY'81

FORECAST ACTUAL PE FORECAST ACTUAL PE

let Otr 32,364 27,455 17.88 34,507 29,455 17.15

2nd Qtr 32,854 35,034 6.22 34,762 34,938 0.50

3rd Qtr 39,199 36,864 6.33 38,060 37,182 2.36

4th Qtr 38,435 36,562 5.12 37,663 38,802 2.94

TOTAL 142,852 135,915 144,992 140,377

FY'82

FORECAST ACTUAL PE

1st Qtr 35,621 30,330 17.44

2rnd Qtr 35,753 35,040 2.03

3rd Qtr 37,468 41,282 9.24

4th Qtr 37,261 45,739 18.54

TOTAL 146,103 153,194

~"1

MAP• 8.81
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*• Table 3

Pf~rfiotrrmc- of Model -3

1(M)OFA, 3 (1-[•4I (1-0.60.162,14 ) Yt = (1 0.818151 + 0.87187,12 + 0.66825T,3

-0.29190124) ft

NY'80 FY'81

URE CAST' ACPUAL PE FORECAST ACTUAL Plr

"" ist Qt. 31,814 27,455 15.88 35,335 29,455 19.96

2nd Qtr 34,899 35,034 .004 35,779 34,938 2.41

3rd Qtr 43,464 36,864 17.90 44,712 37,182 20.25

4th Qtr 43,116 36,562 17.92 45rO39 38,802 16.07

' NAL 153,293 L35,915 160,865 140,377

FY'82

"FMRECAST ACMIUAL PE

Ist Otr 37,453 30,330 23.48

2nd Qtr 36,308 35,040 1.02

3rd Qtr 41,463 41,282 10.13

4th Qtr 46,196 45,739 1.00

'I.IAL 165,420 153,194

MAPE = 12.17
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O," C(]PAR.XSON OF CEP ESTIMA'TORS FOR

00 ) ELLIPrICAL NORMAL ERRORS

AUDREY E. TAUB
O." MARLIN A. THOMAS

Strategic Systems Department
Naval Surface Weapons Center

Dahlgren, Virginia

Introduction

A common parameter for describing the accuracy of a weapon is the,' circular

probable error,> generally referred to as CEP. CEP is simply the bivariate analog

of the probable error of a single variable and measures the radius of a mean

centered circle which includes 50% of the bivariate probability mass. In the case

of circular normal errors where the error variances are the same in both directions,

CEP can be expressed in terms of the common standard deviation, and estimators are

. easily formulated and compared. In the case of elliptical normal errors, CEP can-

not be expressed in closed form, and hence, estimators are less easily formulated.

The problem addressed herein is the comparison of CEP estimators for the elliptical

case based on some of the commonly used CEP approximations. .

It will be instructive to first review the case of circular normal errors.

In general, it will be assumed that the errors in the X and Y directions are

2 2
independent with mean zero and variances ax and aO, respectively. Under the

circular normal assumption, a2 a aa and the bivariate distribution of
Sx y•. -errors is given by

. . x.2 2 2::" fc ~ ~1 (xy )/2-a xy<oo 1.f. (x, y) = e" 0,X
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"2J The distribution of R = (X2 + Y2) is easily derived and found to be

2 2r -.. er2/2c2

"gcr) - e , r > O. (2)
c

This is the well known Rayleigh distribution with ctrmulative distribution

function

.22

P(R < r) -G c(r) -1 er2/a (3)

- By definition, Gc(CEP) * .5, and the solution of equation (3) yields the well-

known expression
.4o

CEP * [-2Un (.SO)J a 1.1774a. (4)

Four estimators for CEP in the circular case were formulated and compared by

Moranda (1959).

Consider now the case of elliptical normal errors. Here the variances are

unequal, and the bivariate distribution of errors is given by

fCXy 2-rJ a - =< x,y < ). (2)

For this case, the distribution of the radial error R was derived by Chew and

Boyce (1961) and has form

- = r ea r2

(r) eL- a I kbr 2 ) (6)
xy

where

a2 +2 2 2a = y x ,b =°-

(2cc) (2a)a
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and 1° is the modified Bessel function of the first kind and zero order, i.e.,

7T

Io(X) e-x Cosedeo

The cumulative distribution function for R is denoted by

r

P(R < r) - GE(r) S g2 (t) dt, (7)
0

but it cannot be expressed in closed form. Hence, the radius of the 50% circle

for the elliptical case cannot be expressed by a simple formula as it was in the

circular case. One has to solve GE(CEP) - .5 by numerical methods or by referring

to tables prepared by Harter (1960), DiDonato and Jarnagin (1962), and others. To K

avoid using these tables or numerical procedures for CEP evaluation, a number of

approximations have been developed over the years. Five of these approximations

have been chosen for examination. They are designated below as CEP1 through CEPs:

CEP1  1.1774 (8)

(C + a
C - 1.1774 (9)

"CEP3 / (10)

a>~~~~~G +E (' 2 Y\' 2 +a

-4 4

U11

.. ( . . .



* .S65 "ma 4 .612 amin, amin/%iax > .2S

- .667 arax + .206 ain, rne < .25

T ,y
::-CEPs (1 - -• .2) :

. CEP1 and CEP 2 were taken from Groves (1961), CEP 3 was established by Grubbs (1964),

CBP 4 is a piece-wise linear combination of the standard deviations, and CEP 5 was

also established by Grubbs (1964) using a Wilson-Hillerty transformation of the

chi-square in CEP 3. Plots of each approximation versus the true CEP as a function

C /ax are shown In Figures 1 through 5. These give a fairly good indication

of how well each performs. It is seen that CEP 1 deteriorates rapidly as we depart

from the circular case (for which CEP, degenerates to 1.1774c), CEP2 is reasonably

S good if the ratio amin/Omax is not less than about .2, CEP 3 appears good for all

ratios, and CEP 4 and CEP 5 appear good to a lesser extent for all ratios.

"If these approximations were used only as approxtLations for assumed values

of the error variances (as one does in wargaming and round requirement studies),

then there would be no estimation problem. However, in many cases, weapons

analysts are using estimates of the variances in these approximations (based on

sample data) to form estimates of CEP. Hence, the problem now becomes an estima-

tion problem instead of an approximation problem. In particular, the problem

"addressed in this paper is that of comparing the five estimators for CEP formed

by replacing the population variances in equations (8) through (12) with sample

var ances Sx X - X-/n and -r Yi/n. (In these expressions, Xi and Yi are the

recorded errors In the X and Y directions, respectively, for the ith impact and

* n is the number of sample impacts.) These estimators will be referred to as
A A

CEP 1 through CEP 5 in the discussion w.hich follows.

'.12
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4Methodology

"Measures of comparison employed in this study were the mean squared error

(MSE), expected confidence interval length, and confidence interval confidence.

With regard to the former, the WSE of an estimator e for a parameter e is defined

in the usual sense, i.e.,

MSE(e) - B(e- ) V(e) + B (e)

where E represents expectation, V represents variance and B represents bias. It

was chosen because it accounts for bias as well as variance and all five estimators

are biased for CEP except in the degenerate circular case. With regard to the

second measure, it was chosen because it too accounts for bias as well as variance

but in the sense of interval estimation vice point. These computations were based

on approximate distributions of CEP estimators and did not provide intervals with

•., specified confidence in all cases. Hence, the third measure was included to

estimate the true confidence.

The computation of these measures was straightforward but not simple due to

the complexity of the estimators. Recall that 1, 3 and 5 each involve radicals

of linear combinations of sample variances and estimators 2 and 4 involve linear

combinations of sample standard deviations. Hence, the sampling distributions

were approximated. The approximations were achieved by matching the variance of
estimators 3 and 5 with the variance of the chi-square distribution and by match-

ing the variance of estimators 2 and 4 with the variance of the chi distribution.

Estimator 1 was simply approximated by a chi-square with 2n degrees of freedom.

This distribution is exact only in the circular case and was included to show how

poorly it becomes when eccentricity of the distribution increases. The approxi-

mations are shoin in Figure 6 and are discussed in more detail in the next

paragraph.
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Figure 6 provides a summary of approximate distributions for each CEP.

Sand defines several multiplicative factors, Ki, eccentricity c and degrees of

freedom v and v'. v" does not have a simple form and is described below.

"* Because estimators 3 and 5 are of the same general form, the distribution

of the squares of both was approximated by matching the variance of

"2 2

+ (13)

with 2 v1', the variance of a chi-square with v' degrees of freedom. It was found

that v *nv where v c + Expression (13) can be rewritten as
C +.

°~,1,

'" u' CEP

where i 3 or S (14)

to conform to the expressions in Figure 6.

Estimators 2 and 4, representing linear combinations of the standard

deviations, were approximated by matching the variance of a chi with v* degrees

of freedom with the variance of

(Sx +S) (1S)

C + y_
x y

The variance of expression (1S) was found to be

2 n +c(6\1* (I H () I+2(16) "

(1+0

and the variance of a chi with v* degrees of freedom is

"•*(I H 2 ('A))
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..

where H(x)

SUpon equating the two, we find that v* satisfies

H(V*) ,1 (1 H2(n)) 2 +c

and can be obtained from a table of inverse solutions of the H functinn.

The approximate distributions allow one to derive approximate mean squared

errors for the CEPi estimators which are given in Figure 7. The Ki coefficients

are defined as before and Bias(CEP.) is defined as

E(CEPi) -True CEPi for i , i2, ... , 5.

In general, a is a scale factor representing the maximum a value; however, in
yA A ,

the examples given here ay is always equal to 1. Note that MSE(CEP 2) and ?4E(CEP 4)

can be expressed in exact rather than opproximate form.

Since a point estimate may not provide adequate information, approximate

95% confidence intervals were constructed for each estimator using the distributions

discussed above. The approximate 100(l-a)% confidence limits for CEP are given

by

AA

where CEP. is the ith estimator and vi equals the degrees of freedom associated
1

with CEPi. Expected confidence interval widths can then be co, puted and used as

measures of comparison beti ,- L stimators. Clearly, if one could compute exact

95% confidence intervals, comparison of interval widths would be straigphtforward.

*" However, only approximate intervals can be obtained and the confidence associated

with each interval nust be computed before a complete evaluation can be made.
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Confidence was estimated using 10,000 Mknte Carlo replicates for samples

of size 5, 10 and 20 and measuring the percentage of time the true CEP fell

within the interval. Confidence and expected confidence interval widths were

then jointly examined.

Results

The object of this study was to examine and evaluate the behavior of

several candidate CEP estimators over a wide range of conditions. Sample sizes

ranged from S to 400 and eccentricities ranged from c - 1, the circular case to

"c - 20, a highly elliptical case. Extreme values of the sample size and

eccentricity may be infrequently encountered but were included for completeness.

Clearly, an estimator behaving poorly under circumstances unlikely to be observed

should not be disregarded as a viable candidate.

Prior to determining approximate distributions and mean squared error

(MSE) approximations for the estimators, a Mbnte Carlo simulation was developed

for computing the variance, bias, average squared error (ASE) and standard error

for each estimator at each of three sample sizes (n - 5, 10, 20). The simulated

ASH's were used as a check against MSE approximations which were subsequently

computed.

LUpon comparing the simulated ASE's against results of the W•E approximations

for sample sizes 5, 10, and 20, it became evident that MSE approximations were

inadequate for estimators 3 and S. In fact, in the mid-range of the eccentricity,

c, the MSE for 3 and 5 differed from the simulated values of ASE by as much as

three times the standard error. For this reason, the simulated ASH values are

presented in Figure 8 while the approximate MSE values, found suitable for

larger sarile sizes, are shown in Figure 9.

Despite some Luctuation at c - .05, Figures 8 and 9 show estimators 2

through 5 producing fairly close results. As the sample size increased,
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estimator 4 exhibited the smallest mean squared error and appeared to be the

most satisfactory point estimator.

Figures 10 and 11 contain expected confidence interval width and confidence

interval confidence, respectively. If the computation of exact 95% confidence

intervals were possible, a straightforward selection of the estimator producing

the narrowest width could be wade. However, the approximate confidence intervals

have varying levels of confidence associated with them, all of which under-

estimate or overestimate the desired M5% level. It appears that the wider lengths

are associated with higher confidence and the narrower widths with the lower

confidences so that a true comparison is not really possible. However, it is

evident that estimators 2 through 5 do not distinguish themselves as being far

superior or grossly inferior to one enother. This is essentially the same result

obtained from the ?SE comparisons.

In summary, unless c is very small, estimators 2 through 5 produce

reasonably close results. If confidence intervals are not desired, estimator 4

would be an acceptable choice. Otherwise, estimator 3 is recomended due to

ease of confidence interval computability.
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Approximate Distributions of Estimators

(1) 2x

C4) Y Y2n

"2' 2 ( +

AZ

2) v~ CBP 2 2

v ' c P 3

(3) ,.,*

~2 2 (E-~l.

"y 3
vv 2

(5) 1 2EP"l

SKI - 1.1774 K3  (2 Xv,"+K1 Q(K-

c4 2

-i .565 , g2 * .612 when c > .25 i

gl .667 , g2 - .206 when C < .25 .•

" ~ ~Figure 6 .
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MEAN SQUARED ERRORS

(CA2 2 C2+1 2 (CP )I

MSE(CEP, = a K I 1-H (2n)] + [Bias CEPlJ

MSEICEPJ K a )
M2) ( y 2 (1-H (n)] + [Bi(sCEP2

.1•

. MSE (CEP 2 2 + 1 I2 i

" "v ( C2 + 1.)2
S1, = Ill Vp =

- 4+ 1

MSE(CEP 4J =oy2 g• +gE C2I [1-H 2(n)] + [Bias (CEP 4J]2

4) [Bia 115

MSE(CEP5) c uy K(2t) -H2 { ' + Bias CE
5 2•

"" Exact

Figure 7
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AVERAGE SQUARED ERROR

N=5

C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.
--- mmm- ---

1.0 .068 .069 .070 .069 .069 .003
.75 .056 .053 .053 .053 .053 .002
.50 .056 .042 .041 .041 .042 .002
.35 .063 .037 .038 .038 .039 .002
.20 .073 .035 .039 .040 .041 .002
.05 .079 .041 .044 .043 .045 .002

C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.

1.0 .034 .035 .035 .035 .035 .002

.75 .029 .027 .027 .027 .027 .002

.5o .031 .021 .021 .021 .021 .001

.35 .038 .019 .019 .019 .020 .001

.20 .048 .018 .020 .021 .021 .001

.05 .053 .022 .022 .022 .023 .001

N =20
C ASE I ASE 2 ASE 3 ASE 4 ASE 5 S.E.

1.0 .017 .017 .017 .017 .017 .001
.75 .014 .013 .013 .013 .013 .001
.50 .017 .011 .010 .010 .010 .001
.35 .024 .010 .009 .009 .010 .001

.20 .034 .009 .010 .011 .011 .001

.05 .039 .013 .011 .011 .012 .001

Figure 8
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MEAN SQUARED ERROR

* N 50
SC MSE I MSE 2 MSE 3 MSE 4 MSE 5

1.0 .0069 .0069 .0069 .0069 .0070
.75 .0055 .0054 .0057 .0054 .0057
.50 .0077 .0044 .0051 .0042 .0052

.35 .0143 .0041 .0049 .0037 .0050
.20 .0235 .0036 .0047 .0036 .0050
.05 .0275 .0072 .0045 .0042 .0048

N -100

C MSE I MSE 2 MSE 3 MSE 4 MSE 5

1.0 .0035 .0035 .0035 .0035 .0035

.75 .0029 .0027 .0028 .0027 .0029

.50 .0057 .0023 .0026 .0021 .0026

.35 .0126 .0022 .0024 .0019 .0026

.20 .0220 .0018 .0023 .0018 .0026

.05 .0261 .0053 .0023 .0021 .0025

N -400
"C MSE 1 MSE 2 MSE 3 MSE 4 MSE 5',i-" - -"-- -• :;

1.0 .0009 .0009 .0009 .0009 .0009

.75 .0009 .0007 .0007 .0007 .0007
.50 .0042 .0007 .0007 .0005 .0007
.35 .0113 .0008 .0006 .0005 .0007

.20 .0209 .0005 .0006 .0005 .0008

.05 .0251 .0039 .0006 .0005 .0007

Figure 9
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CONFIDENCE INTERVAL LENGTHS

N=5

cCLCI CL 2 CL 3 CL 4 CL 5

1.0 1.213 1.160 1.305 1.145 1.317
.75 1.071 1.028 1.175 1.014 1.186
.50 .950 .923 1.118 .918 1.131
.35 .897 .889 1.129 .917 1.144
.20 .856 .876 1.149 .985 1.168

•.05 .841 .912 1.176 1.054 1.196

.4

N 10
C CL 1 CL 2 CL 3 CL 4 CL 5.: ;m mm m I- I I

1.0 .792 .776 .817 .768 .823
.75 .698 .685 .735 .676 .741

4 .50 .622 .614 .697 .601 .705
.35 .587 .586 .693 .586 .702
.20 .564 .573 .694 .636 .706
.05 .553 .579 .695 .662 .707

N 20
C CL I CL 2 CL 3 CL 4 CL 5

1.0 .537 .533 .545 .531 .549
.75 .475 .472 .492 .467 .496
.50 .423 .421 .465 .411 .470
.35 .400 .401 .460 .393 .466
. ,20 .384 .388 .455 .429 .462
.05 .378 .387 .453 .441 .461

"Figure 10
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SIMULATED CONFIDENCE LEVELS
N 5

C PROB I PROB 2 PROB 3 PROB 4 PROB 5

1.0 .950 .947 .963 .946 .963
.75 .941 .947 .965 .945 .965

.50 .894 .941 .968 .944 .967

.35 .830 .937 .963 .939 .961

.20 .753 .932 .952 .923 .950

.05 .714 .930 .950 .936 .948

N 10
C PROB 1 PROB 2 PROB 3 PROB 4 PROB 5

,m -

1.0 .947 .945 .955 .944 .955

.75 .935 .944 .958 .943 .959

.50 .876 .941 .967 .943 .966

.35 .789 .939 .967 .941 .965

.20 .689 .939 .959 .931 .955

.05 .640 .931 .951 .943 .948

N=20
C PROS 1 PROB 2 PROB 3 PROS 4 PROB 5

1.0 .952 .952 .956 .951 .956

" .75 .938 .951 .960 .951 .960
.50 .858 .945 .970 .946 .969

.35 .724 .942 .970 .947 .968

.20 .567 .946 .961 .937 .955

.05 .506 .912 .950 .946 .946

Figure 11
328

. . .. . . . . . . . . . . .. -' - - -• • , .- .. . ,• ,, . .. _ . ,. ,..,,.. ,- _'. , ,., .. - " " . . . '-. . .S. i ,i i , i •. ~i i



WIND VARIABILITY It! THE BOUNDARY LAYER
00 AND ITS ASSOCIATION WITH TURBULENCE,

RED AND WHITE NOISE

Oskar M. Essenwanger
Aerr.physics Gr(i.jp

C) Research Di rectorate
US Army Missile Laboratory

US Army Missile Commarnd
Redstone Arsenal, AL 35898

"ABSTRACT. In the boundary layer, wind fluctuations during short time
," intervals in the magnitude of seconds are commonly interpreted in terms of

turbulence theory. According to Kolmogorov, Obukhov and Corrsin, this
requires a -5/3 slope in a diagram of the power spectrum versus the wave
length in double logarithmic coordinates. The turbulence characteristics
fade with averaging time of the wind measurements.

Investigations of one- and six-second tower measurements at Redstone
Arsenal ard Otis Air Force Base revealed, however, that these small scale
tluctuations more frequently show associaions with white or red noise rather
than turbulerce characteristics in the spectrum. It will be illustrated
that the turbulence slope is a special case of red noise. _.__.__

I. INTRODUCTION. In the past two decades wind sensors with high sens-
4 tivity and shurt time responses were developed. These instruments made it
possible to measure wind fluc'jations on the scale of secords or even for
shorter time intervaic. In the bo~andar, lAyer these short time fluctuations
are mostly analyzed or interpreted in term• of frictional or convective
turbulence theo. . It is sometimes overlcoked, however, that these fluctu-
ations may be random (white) noise or simply include persistence which
produces a red noise spectrum.

In the subsequent sectionis a detailed analys's ,Jf power spectra of %he
wind is performed for observations from one- and six-second tower measure-
ments at Redstone Arsenal, Alabama, and Otis APB, Mass., by Gil' u-v-w
anemometers (see Gill, 1975). It is delineated that the slope of some
spectra (in double logarithmic coordinatis) differs from t"e e)'pected -5/3
law of turbulence (inertial subrangel, but it follows a pattern of persistence.

The slope of power spectra for red noise was studied, It can be shown
that a first lag correlation of 0.85 and exponential red noise produce a
slope of -5/3 in the spectra for medium and short waves, although for the
empirical data in this investigation the first lag correlation producing a
-5/3 slope was slightly higher (see Figure 3). Red noise in the data series
can produce the same slope as turbulence, although turbulence and red noise
spectra are not identical and differ in the region of long waves and at the
very tail end of short wave length.

"Finally, the relationship in time averaging of wind components for data
from Redstone and Otis is analyzed. As expected, the variance of the data
decreases with increasing average time. The first lag correlatiotis for the
averaged data sets, however, do not display a uniform pattern.
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II. THE POWER SPECTRUM OF TURBULENCE. It is customary to present the

"-Z" time fluctuation of the U-componenrf-f the-wind (in direction of the mean
flow) by:

where Us is the "stationary" part and Ut the "turbulent fluctuation." The

other wind components, V and W, follow in analogy.

The stationary part is usually the mean value, Us = U. If U changes in

time, the series must be considered as nonstationary and U may represent

some changing quantity, although the change may be slow. Nonstationary time
series may show complex patterns, aithough the change in Us would not affect
the part o*^ a power spectrum towards waves of short duration. Techniques to
separate U,, from Ut have been developed (e.g., Essenwanger and Billions, 1965).

"For this investigation, Us is considered to be constant over a homogeneous

. time period.

- The turbulent fluctuation requires (by definition of Us = U)

""E • Ut/N = Ut = 0 (2)

* but the variance:

E U2/N =oG2 O (3)
t Ut

In addition, for turbulence in the inertial subrange, the energy spectrum as
a function of the (standardized) wave number K follows:

E(K) - •2k K"53

according to Kolmnogorov-Obukhov-Corrsin (e.g., Tennekes and Lumley, 1973, p.
266; Priestly, 1959, p. 61; Hinze, 1959, p. 194, etc.). This leads to a
squared standardized amplitude L of a Fourier series for the time series of
turbulence data:

In E(K) = In L = const -(5/3) In K. (4)

(For L of the power spectrum, see Tukey, 1949; Blackman and Tukey, 1958; or

Cooley and Tukey, 1965.) Thus, Lj will show a slope of -5/3 in double loga-

rithmic coordinates with L as the ordinate and In K as the abscissa.

Equation (4) is referred to in this study whenever the slope angle is discussed.

Wind observations recorded at one-second time intervals with the u-v-w
Gill anemometers (see Gill, 1975) were made in 1974 on towers at Redstone

.: Arsenal, Alabama, and the power spectrum of the AU component for a combination

i
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of levels was established. Figure 1 provides an example for the power spectrum
AU of the windshear from 18- to 30-foot heights, where AU is the difference of
the U-components from two respective heights. The slope of the power spectrum
(obtained by regression analysis) shows -1.63, which is close to -5/3. The
measurements over a one-hour time period fulfilled the definition of stationary
data.

Later recordings, at six-second time intervals, were obtained (1981) from
Otis AFB, but the power spectra of the AU windshears did not delineate a -5/3
slope for this set of data. A detailed analysis of the U-components themselves
revealed that the wind components at the individual levels do not follow a power
spectrum of -5/3. Consequently, it may not be expected that the power spectra
of the windshear show a -5/3 slope. An example for the power spectrum (double
logarithmic coordinates) of the U-component at an altitude of 10 feet for the
tower data set under investigation is illustrated in Figure 2.

At first it was considered that the difference in the slope angle could
be attributed to the sampling rate. Some change in the angle may be expected
for an assumption of red noise (see Section III), but turbulence in the inertial
subrange would require that the slope should still be around -5/3.

The power spectrum (Figure 2) is truncated at waves of 12-second duration
compared with Figure 1, which extends to two seconds, but the slope should not
have changed that significantly. Corresponding with Figure 1, spectral values
from wave length corresponding to 30 seconds to 12 seconds do not produce a
-5/3 slope in Figure 2.

One may suggest that the 25 November 1981 data stem from a nonstationary
time series. Indeed, there is a break in U at about the middle of the time
series. However, as pointed out previously, fluctuation of 1 would affect
the amplitudes of waves of longer duration and should not alter the tail end
of the spectrum for waves with short duration. Thus, nonstationary behaviot
is not reflected in cnanges of the wave spectrum of shorter length. A split
of the data into the two difFerent periods provided the same pattern as illu-
strated in Figure 2.

A further possibility for the lower slope angle in Figure 2 data is the
assumption that the data do not show turbulence in the inertial subrange, or
the fluctuations are governed by different laws. As an alternative hypothesis,
a white or red noise pattern will be studied next.

III. WHITE AND RED NOISE. It is common knowledge that meteorological
time series show persistence. Persistence In signal processing is usually
called red noise, while white noise indicates independence in the data sample.White noise leads to a power spectrum where all (squared) amplitudes are equal

except for random fluctuations. Red noise can be expressed by several models,
although two primary forms have been customary in geoscience (e.g., Taubenheim,
1969).

In various texts the autocorrelogram in turbulence analysis is assumed
to be Gaussian noise (e.g., Tennekes arid Lumley, 1973; Hinze, 1959, etc.).
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"This form was ruled out by the author for the investigated data because of
dissimilarity in the correlogram and spectrum, and the use of the exponential
red noise model by other authors such as Pasquill (1962), Fichtl and McVehil
(1970), or Hanna (1979). (See also Stewart, 1981.)

!rhe form chosen here is the exponential red noise which is identical with
a first order Markov chain. In terms of an autocorrelogram we can write:

k (5)

where p is the first lag correlation and k 0 0,...,m. This series is
identical with:

Pt exp (-bt) (6)

where t>0, b =-In pc>O, PC>0 (see Box and Jenkins, 1970, or Essenwanger,

"1980). The corresponding power spectrum is:

(2/b) / [1 + iT 2J/b] (7)

(see Taubenheim, 1969, etc.). Gilman et al. (1963) derived:

L - p) / (1 + p2  2 PC cos kir/m] / m (8)
.k (C

which is a good approximation for pc_ 0.9.

The power spectrum of white noise can be stated as:

Lk = const (9)

and is produced from po X 1, pk = 0 for all k > 0.

Figure 3 represents the power spectrum of (exponential) red noise for
a variety of first lag correlations from p = 0.9 down to 0.1 for a normal-

"ized maximum lag of m z 60. The power spectra show a variety of slope angles
ranging from -1.78 for pc = 0.9 to about -0.20 for pr Z 0.1. Thus, the

power spectrum exhibited in Figure 2 could come primarily from data assoc-
iated with red noise of pC= 0.?. If the red noise data concept is the generating

* background of the wind fluctuation, then the slope in the power spectrum
would change with a change in the sampling time interval.

Figure 4 provides an example of the dutocorrelogram of data taken at
Redstone (19 May 1974) at one-second sampling time and the corresponding
series of the same data at six-second time intervals. In the latter, every
sixth correlation coefficient appears. While the first lag correlation for
one-seconds is pl= 0.97, the value drops to pI= 0.80 for six seconds. A

corresponding change in the slope of the power spectrum is observed. Under
the assumption of exponential red noise, the change in angles is very small.
It amounts to about four degrees. (From pc = 0.97 to pc = 0.8, the slope

reduces from -1.85 to -1.56, or in angles from 61.60 to 57.3o,)
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.A

Figure 4 supports the conjecture that exponential red noise is a primary
factor in the 1974 data series. Only correlation coefficients Pk for k > 50

deviate from the pattern. These coefficients k > 50 are not significantly
different from zero, however, although they appear dissimilar to the exponential
red rjiise line.

"Figure 5 exhibits the empirical relationship between the slope angle and
the first lag correlation pc of the U-component and AU of observed wind data.

These 37 samples were prepared from power spectra of the 19 August 1974 (Red-
"- stone) and 25 November 1981 (Otis AFB) data. The regression line deviates only

slightly from the expected line of pure red noise (Figure 3). Six samples
(dots) of the 37 samples represent the slopes of time difference windshears
(data 19 August 1974):

A t S - P(At U), + (A tV)2 ]|(ic)

where At denotes the time difference. In order to create independent data

sets, the original data series was reduced by accepting only every t-th value.
The autocorrelogram for ALt • 8 seconds showed a P, a 0.65, which slowly decreased

to P6 0 - 0.48. Thus, the very slow decline produces the outlier (pc = 0.65,

slope angle -5°) and can be explained as a truncated but non-exponential auto-
correlogram. However, the physical interpretation of the high persistence in
this particular data series needs further investigation.

The relationship in Figure 5 and a comparison with Figure 3 render the
conclusion that pc is about 0.85 if the slope should agree with the required

slope of turbulence in the inertial subrange. Consequently, a slope angle of
-5/3 can also be produced by a data series whose persistence factor agrees
with an exponertial red noise model of pc between 0.8 to 0.9.

In turbulence analysis an integral scale is defined:

RTs = 7'pt)dt (11)

For time series records at a given point Rs is the Eulerian integral scale
(e.g., Tennekes and Lumley, 1972, p. 275, etc.). It can be related to the
Eulerian length scale of turbulence:

LEinU s (12)

(e.g., Ivanov and Klinov, 1962, Tennekes and Lumley, 1972, Weber et al., 1982,
etr.).

In the exponential model R Is a unique function of Pc, the first lag
S

correlation, and pc is related to the slope. If turbulence were to follow

the exponentidl red nuise model, it implies that turbulence in the inertial
subrange requires a special value of s and the length scale of turbulence LE

'I Ewould change only with a change of U. If U is constant, however, the slope
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of the power spectrum is a function of Rs alone, which implies that it is a
S

function of PC, and may differ from -5/3. Thus the power spectrum may show

other turbulence than the inertial subrange, a variation of the slope according
to the type of stability conditions (e.g., Tennekes and Lumley, 1972, Weber
et al., 1982, etc.), or no turbulence at all. In the latter case, the fluctu-
ations of the wind velocity follow a random pattern with persistence kred
noise).

The associations illustrated in Figures 3, 4, and 5 leave another inter-
pretation open. Let us return to equation (5) and write:

M £ (13)PmM 0 C z 13

Using M as a scaling factor, the exponential autocorrelogram can be standard-
ized, e.g., assume that e = 0.001. In a first case of Pc = 0.9, we find M, =

65.5. Under an assumption of Pc = 0.5, we derive M2 = 10.0. Consequently,

M, - 6.5 M2 . Let us assume that we have sampled our records every six seconds
and have found a first lag correlation of Pc = 0.5. The autocorrelogram for

(roughly) one-second sampling would increase pc to 0.9 and provide a slope of
-5/3. Since we have not altered the data set, U would not have changed. In
this case, the Eulerian length scale of turbulence LE would have changed be-
cause 7s for pc z 0.5 is smaller than Ts for 0.9. It must be taken into

• .account, however, that At is different in both cases (equation 11). Otherwise,
the slope angle changes as an effect of the sampling rate.

The last example illustrates that it is not sufficient to study only the
slope of the power spectrum -In turbulence analysis. Other turbulence charact-
eristics must be added in order to come to valid conclusions.

IV. INSTANTANEOUS AND STANDARD INSTRUMENTATION. Redstone wind data taken
at one-second sampling intervals by the u-v-w "iMlanemometer and at Otis AFFH
can be considered as -instantaneous observations, although at Otis AFB sampling
occurred every sixth second. There is a trend toward development of even more
sensitive instrumentation in the future, using electro-optical wind measuring
devices.

The difficulties in the interpretation of the slope angle which were
delineated in the previous section are riot limited to instantaneous measure-
ments. Standard instrumentation measurements resemble the application of an
averaging process to instantaneous values. It may be appropriate to examine
briefly the effects.

In the averaging process, waves of short length are truncated compared
with the original spectrum. this is not ar adverse effect by itself. Under
the assumption of exponential red noise, the first lag correlation would
determine the slope.
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TABLE 1

EFFECT OF AVERAGING

DATA: 19 AUGUST 1974

(1 SEC SAMFLING, LEVEL 6 FT)

SEC Pu Pv 2
- - __________U V

1 0.98 0.98 1.28 0.50

4 0.95 0.92 1,25 0.48

8 0.90 0.85 1.21 0.46

16 0.81 0.74 1.15 0.43

24 0.76 0.65 1.07 0.40

32 0.68 0.61 1.04 0.38

48 0.61 0.55 0.92 0.33

64 0.57 0.51 0,86 0.31

MEAN C- - 0,60 9" 0.07 M/SEC

TABLE 2
EFFECT OF" AVERAGING

(Tower P)

DATA: 25 NOVEMBER 1981

(6 SEC SAMPLING, LEVEL 10 FT)

"FIRST SECOND

AVERAGE 2 2 2 2

1 0.57 0.40 2.85 1.66 0.44 0.25 2.23 1.34

5 0.59 0.53 1.63 0.74 0.40 0.40 1.04 0.46

10 0.61 0.57 1.30 0.55 0.37 0.44 0.70 0.31

15 0.60 0.59 1.16 0.49 0.39 0.35 0.54 0.27

20 0.60 0.65 1.05 0.43 0.28 0.39 0.50 0.22

30 0.60 0.69 0.90 0.38

MEAN U 6.08 V 0.0 M/SEC U = 6.41 V 0.0 M/SEC
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It is not, trivial to predict the behavior of the first lag correlation
as a function 'of the averaging interval. The first lag correlation for
averages depends on the'structure in the covariance matrix of the data series
"and the decrease of the variance by smoothing. Table I provides an example
of a declining first lag correlation with increase of the averaging interval,
but the decline is not always found. Table 2 exhibits a complex pattern. In
three columns of Table 2, the first lag correlation increases with increasing
averaging time, while one column shows a decrease. Since decrease and increase
do not simply relate to the magnitude of the first lag correlation of the
original data series, no simple prediction model is applicable.

Tables I and 2 confirm that the variance decreases with increasing aver-
aging interval in accordance with the central limit theorem.

The slope in the power spectrum for the averaged data series changes in
accord with the magnitude of pc (see also Figure 5). In the exponential red
noise model, 7s depends on Pc, and the previously discussed problems apply.
It is possible, however, that averaged values represent fluctuations of the
wind following a random process with persistence. In this. case, the slope
angle need not be -5/3. More investigations are necessary, however, before

, final conclusions can be made.

V. CONCLUSIONS. It is customary to consider the fluctuation of the wind
in the boundary layer (luring short time intervals (e.g., seconds) to be in
agreement with turbulerce in the inertial subrange. While this association
was confirmed for tower data at Redstone Arsenal, other data from Otis AFB
delineated a different slope in the power spectrum (in double logarithmic.
coordinates). The detailod investigation revealed that these small-scale
"fluctuations are more likely to be produced by a random process with persistence
(exponential red noise). This concept would explain that the angle in the
power spectrum is not -5/3, but is a function of the first lag correlation
(Figure 5).

A second interpretation is possible. The relationship between slope angle
and first lag correlation is based on an exponential red noise model. The
structure of turbulence in the inertial subrange Is an exponential red noise
model with a first lag correlation arouný 1.85 for fluctuations of short
duration.

It was further shown that averaging of the instantaneous wind measure-ments may lead to a change in slope angle, although no simple relationship
with the exhibited behavior of the first lag correlation could be derived.
The averaging process would tie together instantaneous measurements and
"observations on less sensitive instruments.
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"-,A NEED FOR A MTHODOLOGY FOR
. •PRIORITIZATION OFMISSION AREA DEFICIENCIES

"RICHARD T. MARUYAMA

METHODOLOGY BRANCH
STUDIES AND ANALYSIS DIRECTORATE

DEPUTY CHIEF OF STAFF FOR COMBAT DEVELOPMENTS
"US ARMY TRAINING AND DOCTRINE COMMAND

FT MOWROE, VIRGINIA

• lAbgt 'd The US Army Training and Doctrine Comuand (TRADOC) repro -nts the
battlefield user in developing doctrine, training, force structure, And
materiel requirements for the future. To ensure these requirements stem from
an overall battlefield concept and are bý"od on sound analysis, TRADOC

._or-ducts Mission Area Analysis (MAA) in the twelve areas,outlined in figure 1.
Each area -Ia assigned to a TRADOC center or sch-o0FiiFoanalyses and the
prioritization of resulting deficiencies.

Once all the analyses are completed and each proponent has prioritized the
deficiencies within the mission area, TRADOC must integrate and prioritize the
twelve deficiency lists into a single ordered list ot battlefield
deficiencies. This single list will guide the development of programs and the
allocation of resources toward correcting deficiencies in order of their
importance.

The difficulty is in developing a prioritization methodology which is
suf'iciently structured and rigorous to produce consistent results from year
to year, while being sufficiently simple and well defined tc e understood and
accepted by the decision malers who will use it.
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1. Introduction. The Army's Training and Doctrine Command (TRADOC) and
Materiel Development and Readiness Comand (DARCOM) are forging a linkage
which will help comprias the materiel development cycle while enabling the
Army to project requirements further into the future. The Army's Long Range
Research Development and Acquisition (RDA) planning system and TRADOC's
Mission Area Analysis (MAA) prcceis combine to provide a roodmap of how to get
to the Army of the future. They provide a means to consider the future
implications of current decisions and a way to couple these actions with the
Planning, Programing, Budgeting, and Execution System for resource allocation.

The current Long Range RDA process, while still in its infancy, facilitates
timely and systematic modernization. It recognizes that modernization must be
coordinated throughout a total system that includes materiel, training,
personnel, logistics, doctrine, tactics and related system requirements. It
understands that these components are interrelated; solutions in one area
could well cause deficiencies in another. Only a comprehensive approach to
the total system will produce equipment that meshes with the force structure,
training, and doctrine. To implement the process, however, DARCOM must
understand the needs of the future battlefield, and that is where TRADOC comes
"into the picture.

Mission Area Analyslis (MAA) allows the synthesizing of information gained
through many xndividual studies and analyses into a single, internally
consistent framework. To facilitate the detailed analyses of the Army's
ability to execute its wartime missions, the overall battlefield concept is
divided into 12 mission areas. These mission areas serve as the basis for
measuring the capabilities of the force programed in the current Program
Objectives Memorandum (POM) to fight a successful battle against a projected
threat. Each mission area was assigned to a TRADOC center/school for analyses
and the prioritization of resulting deficiencies.

Figure 1 shows the TRADOC mission area structure and proponent for each area.
SszssIoW AM ROONI

CLOSE COMBAT (HEAVY) US ARMY ARMOR CENTER, FT KNOX, KY
CLOSE COMBAT (LIGHT) US ARMY INFANTRY CENTER, FT BEMMING, GA
AVIATION US ARMY AVIATION CENTER, FT RUCKER, AL
AIR DEFENSE US ARMY AIR DEFENSE CENTER, FT BLISS, TX
COMBAT SUPPORT US ARMY ENGINEER CENTER, FT BELVOIK, VA

ENGINEERING, 4
-. MINE WARFARE

COMBAT SERVICE SUPPORT US ARMY LOGISTICS CENTER, FT LEE, VA
FIRE SUPPORT US ARMY FIELD ARTILLERY CENTER, FT SILL, OK
BATTLEFIELD THRATER US ARMY COMBINED ARMS CENTER, FT LEAVENWORTH,

NUCLEA. WARFARE KS
NUCLEAR. BIOLOGICAL, US ARMY CHEMICAL SCHOOL, FT MCCLELLAN, AL

CHEMICAL
COMMAND & CONTROL US ARMY COMBINED ARMS CENTER, FT LEAVENWORTF,

KS
COMMUNICATIONS US ARMY SIGNAL CENTER, FT GORDON, GA
INTELLIGENCE & US ARMY INTELLIGENCE CENTER, FT HUACHUCA, AZ

ELECTRONIC WARFARE

Once the MAAs are complete, work begins to integrate the lists of deficiencies
from each mission area and prioritize them into a single ordered list of
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battlefield deficiencies. This single list will guide the development of
programs and the allocation of resources toward correcting deficiencies in
order of their importance.

II. Methodoloty.
The TRADOC prioritization process consists of four phases (see Table

1).

TABLE 1

4 PHASE APPROACH

1. ESTABLISH LIST OF MAJOR DEFICIENCIES SY
MISSION AREAS

II. PRIORITIZE DERCIENCIES WITHIN MISSION
AREAS

I11. INTEGRATE 12 MISSION AREA DEFICIENCY LISTS

IV. AGGREGATE RESULTS INTO ONE PRIORITIZED
UST

a. Phase I - Establish lists of major deficiencies by mission area (see
figure 1).

A strawman list of major deficiencies was developed for each of the 12
TRADOC mission areas by a •Q TRADOC panel comprised of DCSCD, DCSDOC and DCST
representatives, Each stravman list was then forwarded to the appropriate
mission area proponent for review and input. The mission area proponents
submitted recommended corrective actions (three to five) for each identified
major deficiency. The number of corrective actions was arbitrarily fixed, at
3 to 5 with the intent being only to capture the thrust of significant
corrective actions. Mission area proponents then provided the integrating
centers and EQ T•.ADOC with a copy of the revised deficiency list with
recommended corrective actions for final review. The headquarters review
included a screen for consistency in describing deficiencies. The result of
Phase I is 12 separate lists of major deficiencies. Figure 2 shows the
development of the 12 separate deficiency lists for each mission area.
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MPASE I

impi*16

FIGURE 2
b. Phase II - Prioritize deficiencies within each mission area.

Bath mission area proponent then prioritized their list of major
deficiencies obtained in Phase I. This asesunment was conducted considering
the Army's programed forces using systems scheduled for fielding or fielded by
1987.'p.

PEASE II

limau

#1 1 F ! I 11 •

i'im*

':"! FIGURE 3

,'.1

; The technique of peirvise comparisons was used to prioritize the list of

'' ~ maor deficiencies. It involves asking mission area experts (approximately
•:i 30) to independently consider the list of mission area deficiencies, compare
.. the deficiencies two at a time, and sequentially determine their relative
': ~importance. Figure 3 shows the patrwime comparison process used to prioritizes

- each mision area deficiency list.

,:A sample of the survey form for the petrwies comparisons is shown
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in figure 4. The ranking of a particular deficiency was determined by the
number of times (frequency count) it was judged to be most important in
accordance with the above criteria. Individual judgments were treated
equally. The deficiency frequency counts from each mission area expert was
"aggregated and then normalized between 0.0 and 1.0. This process produced a
cardinally ranked list of deficiencies (i.e., the order as veil as the
"interval between each deficiency was established). The list of cardinally
"ranked deficiencies along with the completed survey forms was then returned to
UQ TRADOC.

PAIRWISE COMPARISON EXAMPLE

... Ui n 4 1
I7 1 07 6 4 s I
*. A t I I I itu I*

AI I I I I

FIGURE 4

c, Phase III- Integration of deficiency lists across mission areas.
(see Table 11)

The prioritized lists of major deficiencies obtained in Phase II was
then integrated across mission areas. TRADOC conducted four separate sessions
with general officers (GO) from proponent schools and centers. The
composition of each panel reflected a broad coverage of expertise. Each GO
panel then integrated the 12 mission area lists, two at a time, using the
pairwise comparisons technique. Each GO panel member was asked to consider
the top ranked deficiency in each mission area list and compare them two at a
time to determine their relative importance as was done in Phase 11. The
lowest ranked deficiency in each list was similarly compared. Based on a
"frequency count of these deficiencies, the order of integration for the
mission ares lists was established (see figure 5). The list judged to have
the single most important deficiency became the base list and the list with
the second most important deficiency was integrated into the base list. The

'" top ranked deficiency in the second list will be fixed on the base list in
comparison with its importance to the other deficiencies on the base list.
"Its position on the base list was determined by the consensus of the GO
panel. The lowest ranked deficiency in the second list was fixed on the base
list in the same manner. The interval on the base list between the two fixed
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deficiencies forms the region of integration. The remaining deficiencies on

the second list were then mathematically transformed into the base list. The

GO panel screened the resultant list for any incongruencies or major

discrepancies and made appropriate adjustments. Consensus among the panel

members was required for adjustments to be made. This list became the new

base list. Using the above procedure which is graphically portrayed in figure

6., the next ordered list was merged into the new base list until all 12 lists

were integrated. Four prioritized lists of major deficiencies across mission

areas (one from each panel) emerged from this phase.

TABLE II

" PHASI III - INTEGRATION Of
EFICIENCIES ACROSS ALL MISSION

AREAS

WIN ISl PUIONIl l1ININCIES - t.Ai ANIN NOm

M.A4LITU FOt 00 PANLS - iN4 COME Of:" EXPEt1nK

:~U • NTO NIT B A KCIIOlN ANALYSIS 1l

"IN*uTrIUIN aFie CIN IMl - M11 LIMn AT A TIN

- MIULT: ONE PoiWmZ11 IST Of KMCINCIES ACm. ALL
MA FROM EACN lPANEL

PHASE 1II (G0 SESSION)
7.

WE

FIGURE 5
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PRASE UM m se MA+

-,i.- U f l -

U kI se l .... uIIIII

,mlIliiI l IIIIl

"'.. FIGURE 6
d. Phase I t - Aggregatlon of the four GO panel results.

,.,:jA fifth GO panel was con, ened at UQ T3J.DOC to aggregate the results of
the other GO sessions. This panel consisted of general officers from UIQ
TISDOC, Combined Arms Center (CAC), Ft Leayenvorth, IS, Logistics Center
(LOGC), Ft Lee, VA, Soldier Support Center (SiC), Ft len larrison, II, and the

* D8 Army Forces Coumand (FoReCON) * The four integrated lists of major
deficiencies were revieved and mathematically merged by aggregating the
pairvise comparison results from the four GO sessions. The aggregaetd top and

bottom deficiencies established the order of merge and the regioh of
integration during this prOCess. Thisl ist was screened for discrepancies and
final adjustments were made based on the consensus of the panel. Phase IV ase
the final step in the overall prioritiustion effnrt. the result being a single
prioritised list of major deficiencies across all TRAD•OC mission arees (see
figure 6).

PHASE IV

AWiEN~AV11S Ni ThAIW LUST

UII uI
o.n

- IL mat... Ma

"FIGURE 7
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The TRADOC integration and prioritization process occurs annually. The
current methodology is now and. hence, asks for improvements in overcoming
several shortfalls* The technique does not allow for weighting either
individual deficiencies or mission area lists to give consideration to the
fact that not all mission areas are equally deficient nor equally significant.
Additionally, an artificial coiling of 20 deficiencies per mission area had to
be established to limit the numbers of required comparisons to an acceptable
level. In reality, many MAks produced deficiencies numbering in the hundreds.

Contributors desiring, additional information or wishing to comment on
proposed improvements to the integration and prioritisation process are
encouraged to contact the author by phoning (804) 727-3004 or by writing HQ
TWADOC, ATTN: ATCD-AM, Ft Monroe. VA 23669,.
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UNBIASED RANDOM INTEGRATION METHODS
WITH EXACTNESS FOR LOW ORDER POLYNOMIALS

* Andrew F. Siegel and Fanny O'Brion
Department of Statistics* •Princeton University

ABSTRACT:

. -"- Who a definite integral annot be evaluated exactly."-W./turn to
"_ computer-based methods for ap roximations. There are many different

kinds of snch procedures, bu they divide roughly into two classes:
deterministic and random. j.5 explore the use of methods that

'1 combine these two approaches, preserving the unbiasedness and error
estimation advantages of random methods, but at the same time
maintaining the closer approximation generally found in
deterministic methods...

",.4 INTRODUCTION:
Consider estimation of the integral

.r4

JI f(x) dx.

j -1
A classical deterministic approach might be to try Simpson's

*1 rule, which uses the approximationI

[f(-1) + 4f(O) + f(1)].

This is the integral of the interpolating quadratic approximation
to f that takes on the same values at -1, 0, and 1. The
advantage is exactness for quadratics (and cubic& too, by
symmetry.) The disadvantags of this approach is that the error
assessment irvolve• a higher order derivative of the function f,
which may be difficult to find (especially for a function which was
dJifiolt to integrate analytically in the first place.)

A second approach might be the standard random method known as
simple Mont* Carlo. To match this with the previous approach, lot
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1* .

us also do three function evaluations, and estimate the integral so

2
. tf(X1) + f(XM) + f(XH)"

where the function is evaluated at three values that are
independently and uniformly distributed random varisbles
Sin (-1a 1). The advantage of this approach is unbiasedness: no
matter what f is, so lons as it is integrable, the average (in the

S menuse of expectation) of this approximation will be the true
integral of f. The practical advantage of this is that the
approximation san be repeated several times, senera'ting new
independent random variables each time, and from these results the
average and standard error can be calculated. This gives an error
assesment without need for further mathematical analysis (which
might not be tractable.) The disadvantage of this approach is that
"it is generally not as exact as Simpson's rule and the higher order

-* deterministic methods.

* Methods that combine the advantages (but not the disadvantales)
of each method have been available since the work of Braakev and
Zolotukhia (1960). This and other random integration procedures are
discussed by Hamnereley and Iandsoomb (1964).* Related work has been
done by Rogues, Corbett, and Patterson (1981). Cranley and
Patterson (1970, 1976), Eaber (1969, 1970), and Quackenbush (1969).
We have proposed (Siegel and Zambuto, 1982) the use of symmetric
"quadrature designs of 2k+1 points which achieve unbiasednoes
together rith exaotness for polynomials of degree 2k+l for this
problem.

THB TRREB-POINT INTEGRATION RULE:
Ae symmetric random unbiased S-point integration rule in

unique, and is given by

1 2
"aSIllS) m- [t(-•) + 2(342-l)f(0) +f(4)]

"where 4 has the distribution of the cube root of a uniformly
distributed random variable in (0, 1).
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This may be thought of as a systematically random (as opposed to
a completely random) adaptation of Simpson's rule. The function is
evaluated at three points: -4, 0, and 4, in a symmetric but
partially random design. The weights are chosen properly in order
to assure that the approximation is equal to the 9.nteSral of the
quadratic function that agrees with f at these three points; this
assures exactness for quadratics (as does Simpson's rule.) Finally,

- there remains a degree of freedom: 4 must be specified. As it
turns out, there is only one distribution for 4 that will preserve
the unbiasedness property of simple Monte Carlo: the cube root of a
uniform. It is like applying Simpaon's rule with a special random
"scaling of the dosiln points at whioh the function is evaluated.
Simpson's rule represents only one extremo (Q - 1) of this
continuum of possibilities which must be sampled carefully in order
to obtain an unbiased estimate.

EXAMPLE:
Consider the integral

I f- cot d - - - 1.27324...

* The integral can be evaluated exactly in this case, but we will ulo
numerical methods in order to gain insight into the way the
procedures work. This function goes from zero to one and back to
"zeros hence the simple Monte Carlo estimates can range from 0 to
2. The symmetric random design for this problem yields the
following integral estimate:

If() -2 - L - c0os i)

f2 2

This is a much flatter function! It takes on values from
1.1775... to 1.3333... When these vaJues are sampled randomly it
is clear that they will fall much closer to the true value
(1.27324...) than simple Monte Carlo would. Using the cube root of

a uniform for 4 guarantees that the results will be correct on the
average, and that any standard error or ooafidenoe interval will be
asymptotically correct. Simpson's rule, representing • - 1, always
yields the estimate 1.333..., one of the extremes that the random
rule can achieve (although in general, Simpson's estimate need not
be an extreme.)
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TWO DIMENSIONS:
There is a oorresponding simple formula for the two-dimensional

integral

1 1f(toq) dt dj
-1 1

given by

tfQ,Yl+fl(-,)+flt ,-C)+fl(-4 ,-t) - 4fO,0)
3 f(1,1) " 312 + 1 + 4f(0,O)

This formula provides an exact answer if f is a polynomial in "
and q of degree at most B. It will give an unbiased estimate if(tq) is sampled from the density

3 2 + 1 2 and q in (0.1).
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ESTIMATING THE VARIANCE OF THE
"LOSS EXCHANGE RATIO

it') Eugene Dutolt
OR/SA Branch

Directorate of Combat Developments
US Army Infantry School

Fort Benning, Georgia 31905

SABSTRACT. A measure of force effectiveness that is often used in military
, analysis of combat is the Loss Exchange Ratio (LER). In many cases, the input

required to calculate this measaure is obtained by replicating a stochastic
wargame model by using a computer or a manual exercise. It would be useful to
determine a confidence interval about this measure of force effectiveness. This
confidence interval would enable the analyst to examine problems concerning the
precision of the measure, and compute the replication requirement for a stated
degree of precision. Hypothesis testing could be done to compare the LERs of
different alternative weapon systems introduced into the force. Two methods of
solution are developed and proposed and an example is given. (I---------

I. Acknowledgements. I want to thank the following people for submitting
information and comments that were relevant to this problem. It is this kind of
"after-conference communication that results In the pay-offs for presenting
technical and clinical papers at these conferences.

(Systems(a) Mark Adams (USAMERADCOM, Ft Belvoir, VA) and Gordon Holterman
(Systems Cost and Automation Center; Ft Lee, VA) for both referencing Ge3rge
Fishman's text Principles of Discrete Event Simulation (pages 55-61).

(b) Larry Crow (USAAMSAA; Aberdeen Proving Ground, Maryland) for
referencing C. R. Rao's text Linear Statistical Inference and Its Applications,
pages 319-321.

(c) John Farmer (ATCT-MA; Ft Hood, Texas) for referencing Finney's text
"Statistical Method in Biological Assay, pages 27-29 and also for including some
of his personal notes.

These references are cited in this paper.

II. Introduction. A measure of force effectiveness that is often used in
military an-a-y-Ms-ithe Loss Exchange Ratio. This measure is defined as the
ratio of red casualties (R) to blue casualties (B):

LER a R/B (1)

The LER shows an operational advantage to the blue force if R > B. For this
discussion the values of R and B are obtained by replicating a stochastic
wargame model. For each replication of the wargame the paried values of R and B
are recorded. The average LER, (LER), is computed as:
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LER R (2)

B

Because the generators of these average values are the results of a stochastic
wargame, it would be useful to determine a confidence interval about the
measure. The confidence interval could be used to answer the following
questions:

1. Is the LER > 1?

2. What sample size is required to estimate the LER with some stated degree
of precision?

3. Are various measures of LER statistically different from each other at
some selected level of significance?

In order to determine the confidence interval for the LER it is necessary to
* compute the variance of the estimate.

III. Error Propagation. It is well known (reference Beers) that if a
function othe form

y - f(x 1 , x2 , 3 , ,, x) (3)

, exists, then the variance of this function can be written as:

k k f 1/2 1/2
ry - f xj)2vartx + L r(x (var(xQ) (4)

tij

where t
var(x 1 ) - variance of the i variable

Ru - correlation between the Ith and jth variable.

, The general form of the LER is shown as equation (2); therefore, the variance
of this form cun be written as:

VAR(LER) - VAR (-) (5)

Applying equation (4) to compute the variance of the (LEk) we obtain the
following:

(1B)va(R + -2 + 2 (6)(A~j

Var(LER) (1/-)2var(R) + (-R/B ) 2 var(l) 2(1/0)(-R/B )R{fvar(R)/var() (6)
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The following is also true:

VAR(R) - S2/n; where n = the number of replications
R/

VARB) = S2B/n (7)

R, RRB; as pointed out in Beers (Reference 1, page 31) 3
"" Substitut'nq the set of relationships (7) into equation (6) gives an expression

for VAR(LER).

VAR(LER) - .-[(I/)2s0 + (-R012) 2 S2 + 2(1/B)(-R/B2 )RSRSB] (8)

"This expression is equivalent to the one given by Fishman (Reference 3, page 59)
for "large" value of n. The appropriate 100(l - a ) confidence interval (C.I.)
for the LER could be computed as:

100(l - ) C.I. (LER) - LER + t V/R(LER) (9)

Where t is Student's t with (n - 1) degrees of freedom. Equation (9) is
supported, in part, by Rao (Reference 5, pages 319 through 321) who points out
that in practical applications, distributions of the form we are studying are
asymjptoticallZ normal if the co-variance and partial derivatives are continuous.

IV. Fieller's Theorem. Goldstein's text Biostatistics (reference 4, page 184)
gives asTt-U-on Q -Ke it is necessary to compute a - nfidence interval for a
ratio. The problem from the Goldstein text is given below. Note the
correspondence between the biological experiment and the force-on-force
simulation.

"Quite often in biological experimentation one wishes to estimate a ratio
from a set of observations on the numerator (y) and another set of observations
on the denominator Wx). Now these may be paired observations, each item in a
"sample supplying a value of y and a value of x, so that there may be some degree
"of correlation between the two...Suppose the protein content of cells per unit
of DNA is to be determined. If the cells in question are growing in replicate
bottles, we ,way determine both DNA and protein on the contents of each
bottle...in (this) case, replicate estimates of the desired ratio will be
available.. ."

-Using this example, the replicate bottles become the replicated force-on-force
"simulations and the correlated values of both DNA and protein within each
replicate bottle become the number of red and blue casualties respectively.
Goldstein then points out, "that the appropriate limits of the true ratio R
whose estimate is y/x, are given by Fieller's Theorem as roots of a quadratic
equation:
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-[2 t 2 (S 2 /n)]Rz + 2[ - t 2 rS S /n]R - [2 t 2 (S2/n)] 0 0 (10)
X xy Yy

where r - sample correlation coefficient
n - number of paired observations in the sample

S2x, S2y - sample variances
t a two-tailed value of Student's t with(n - 1)degrees

of freedom"

Finney (reference 2, page 27 through 29) gives a discussion of Fieller's Theorem
and its application to finding fiducial limits to a ratio of two means. Solving
equation (10) for R and using the notation consi1stent with the LER and
force-on-force simulation (i.e., x and E R) we obtain:

, ttSS)SR(B [82 . . t][R2)t
RR n n (1

RUL

Fishman's (reference 3, pages 59 through 61) section on confidence intervals
uses a quadistic form similar to equations (10) and (11) to derive a confidence
Interval for R which is cited as work done by Fieller and is suggested for use
in simulation by Crane and Iglehart.

V. Example. The following numerical example is based on the data used by
Goldstein for his explanation of replicate bottles of DNA and protein cited in
section IV of this paper. The column headings have been changed to red and blue
casualties, respectively.

TABLE 1.

Red and Blue Casualties for each Battle Replication
(adopted from Goldstein)

Replication Number Red Casualties Number Blue Casualties

1 12 5
2 14 7
3 12 3
4 12 3
5 13 8
"6 13 6
7 13 4
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The summary statistics are:

"N 7

- R- 12.71 casualties

SR - .756 casualties

B - 5.14 casualties

SB 1.952 casualties

R * .710

and the esimate of LER (LER) * 2.47.

a. Error Propagation. Applying these data to equation (8) gives a value
of the VAR (LER) equal to .101. The appropriate value of tlfor a 95% confidence
interval with 6 degrees of freedom) is 2.447. The 95% confidence limits for the
LER (using equation (9)) are 3.3 and 1.7. Note that the lower confidence limit
(1.7) is greater than 0.

"b. Fieller's Method. Applying these same summary data to equation (11)
and solving for both roots of the quadistic gives values of 3.7 and 1.9,
respectively. Note that the lower confidence limit (1.9) is also greater than
0.

VI. Conclusions. Although this effort represents a limited study, the
following conclusions are emerging.

a. Error Progation and Fieller's method appear to give "reasonably"
consistent results.

b. Fieller's method is the preferred way to compute a confidence interval
about a ratio. This conclusion is based on some of the existing literature
(Finney, Fishman, and Goldstein).

c. The error propagation method should increase in accuracy as'nhbecomes
large (Fishman and Rao); however, Fieller's Theorem should be more appropriate
for the smaller numbers of replications that are used in force-on-force
simul ati on.
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00 AN EXAMPLE OF SOFTWARE VALIDATION USING A FACTORIAL DESIGN

•;" Joseph M. Tessmer

0 Department of EnergyoOffice of the Strategic Petroleum Reserve

: ABSTRACT

This pa er reports on the effects of the Department of Energy to test

and evaluat validate ,alarge computer model, which represents the world

petroleum istribution system. The evaluation technique employed is a

complete 2 factorial design. The main effects, as well as all 2nd order

effects are estimated. The technique provided criterial insights into the

nature of the software identifying errors and assisting in the development, of

a methodology, for reexamining candidate crude mixes, of oil stored by the

government, for use during possible petroleum interruptions.

DISCLAIMER

The assumptions, procedures, analysis, conclusions, and recommendations

contained in this paper are solely those of the author and do not represent

any official policy of the Department of Energy or U.S. Government.
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Al Factorial Desnln Methodology

An experiment was performed to measure the effect of four sets of
input factors on the oil market, as represented by a large linear
programing model supplied by a private contractor. Two levels for each
set of Input factors were chosen and all 16 possible combinations of

S these input factors were used as model input to the model. This
procedure, a 24 factorial design was chosen since it is economical,
easy to use and provides a great deal of valuable information.
Specifically a two (2) level factorial design has the following
advantages:

"1. If sets of input factors are varied one set at a time with the
remaining factors held constant, it is necessary to assume that the
effect would be the same at other settings of the other sets of input
factors. Factorial designs avoid the assuaptions

2. If the effects of input factors act additively, a factorial
design estimates those effects with more precision. If the effects of
the input factors do not act additively, factorial designs can detect
and estimate the Interactions which measures the non-additivity.

3. Factorial designs require relatively few runs per set of
Input factors studied and can indicate major trends and determine
promising direction for further investigation. To obtain the same
precision of the estimate of the effects measured, in this effort forty
runs would have had to be run using the traditional, one factor at a
time approach rather than the sixteen used in the experiment.

4. If a more thorough local exploration is needed, it can be
suitably augmented to form composite designs.

5. These designs and their corresponding fractional designs may
be used as building blocks so that the degree of complexity of the
finally constructed design can match the sophistication of the
problem.

To perform a 24 factorial design the two levels (or versions) for four
(4) sets of input factors were selected and all sixteen (16) possible

-: combinations were executed. The four sets of input factors and their
*' levels (or versions) are listed on the following page.

364

--..............................



Input fector Levels

1, Composition of the SPR I&, The SPR in filled with
"100% light and sweet crude
represented by Ekofiek

•* (Sweet).

lb, The SPR Is filled with
100X heavy and sour crude
represented by Arab Heavy
(Sour).

2, Crude pattern or availability 2a, Historical 1978 BAU case
(RAU)

2b, As 2a abova with a 50%
closure of the Persian Gulf
with a uniform SPR drawdown
4f 3W.BD (50% P.G.)*

3, Refinery configuration 3a, Worldwide 1978 refinery
capacity (1978)

3b, Worldwide estimated
1985 refinery capacity
(1985)

' 4, Product price elasticities 4a, The proposed set of
elasticities compiled for
this project by the
contractor (CON)

4b, As 4& except a quite
different set of
elasticities developed by
an alternate contractor
for major products in the US

* j (ALT)

6 The selection of this crude oil disruption does not represent the
policy of the Department of Energy and was used solely to evaluate
the reaction of the model to changes in the world crude pattern.
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These input factors combine to produce the following design or

validation matrix:

Deuign Matrix

RUN SPR CRUDE REF
NUMBER COMP PATTERN CONFIG ELAS

1 la 2. 3a 4a
2 la 2. 3a 4b
3 1& 2* 3b 4&
4 1& 2. 3b 4b

" 5 l 2b 3a 4a
6 l 2b 3a 4b
7 la 2b 3b 4,

, 8 la 2b 3b 4b
9 lb 2a 3a 4a
10 lb 2* 3a 4b
11 lb 2a 3b 4a
12 lb 2a 3b 4b
13 lb 2b 3a 4a
14 lb 2b 3a 4b
15 lb 2b 3b 4.
16 lb 2b 3b 4b

Table A-1

The interpertation of the runs in Table A-1 Is easily illustrated
by run number 6 which assumes that the SPR is filled with 100% light
and sweet crude cii. There is a major oil interruption consisting of
a 50Z closure of the Persian Gulf and tho SPR in being withdrawn at
the rate of 3MMBD to reduce the effects of the crude oil shortfall.
The refinery configuration during this period represents the 1978 time

Sframe. Finally the set of elasticities for the demand of products,
within the US developed by the alternate contractor (ALT) are assumed. The
other fifteen runs are interperted similarily.

The sixteen runs of the design matrix, may be visualied geometrically as two
cubes. One possible visualization appears in figure A-1 on the following page.
The run number Is at each vertex.
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A2 Calculation of Main Effects

The "main effect" of a set of input factors io the change in the
response as we move from the "a" case to the *b" case version of that
set of input factors. To examine the effect of the composition of the
SPR a table of eight pair of coluam vectors was constructed (see table
A-2). Aside from experimental error, the difference between the first
column vector of the pair and the second column vector in the pair Is

Sdue to a change, in the composition of the MPR. The average of these
eight differences (one difference for each pair of column vectors) is
the main effect due to the composition of the SPR. Table A-2 contrasts
the composition of the reserve. If the columns are rearanged to that
the run numbers are in a assending order, one obtains the table,
contrasting the product price elasticities. Similar rearangements
yield tables contrasting the other two sets of input factor.

Geometrically speaking, using Figure A-1 the main effects are
calculated from corresponding vertices from the two cubes as described
below.

Input factor

Composition of SPR Left side of both cubes vs
the right side of both
cubes

Crude pattern/availability The front of both cubes

vs the backs of both
cubes

Refinery configuration The bottom of both cubes
vs the tops of both cubes.

Product price elasticities The left cube vs the right
cube.
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5.A3 2nd-Order Interaction effects

Suppose that one Is interested in examining the effects of two sets of
input factors; for example, refinery configuration and crude pattern.
Then the sixteen runs of the factorial design can be grouped into four
sets of four runs each. Each run in the group would have the same
value for the input factors studied, although other input factors would
vary within each group. Assum-e that for the busiress as usual crude
pattern with the 1978 refi-nery configuration, the average value for the
output variable being studied is 100. This will be the base point.
Also assume that the main effects for the crude pattern and the
refinery configuration are 25 and 10 respectively. This means that,
on the average, changing from a RAU crude pattern to a 502 closure of
the Persian Gulf will increase the output variable under study by 25.
Likewise a change from the 1978 refinery configuration to the 1985
refinery configuration, will on the average, increase this some output
variable by 10. If the input factors act additIvely, then the average
value of the output variable with both the 1985 refinery configuration
and a 50 percent closure of the Persian Gulf would be
100 + 25 + 10 -135.

This artificial case is represented by the upper diagram in figure A-2.
Note that the quantity

(b + c -a -d)/2 -(110 + 125 -100 -135)/2 0

i.e. there is no interaction.

Suppose that the input factors do not act additively, and the base
point of 100 and main effects are the same. Then the resulting
measurements could be described by the lower diagram in figure A-2.
The input factors are now said to interact. By convention a measure of

. this interaction is

(b + c -a -d)/2-(145 + 160 -100 -135)/2 - 35

This is the second order interaction and is called the refinery
'.1* configuration X crude pattern interaction.

Like the main effect, the 2nd order interaction is the difference
Sbetween two averages, eight of the sixteen results being included in

one average and eight In the other. Analogous explanations are easily
coastructed for all other 2nd order interaction effects.

, 5.A4 Higher-Order interaction effects and the Standard Error.

Similar procedures to those above can be gIven for deriving the third
and fourth-order interactions. Due to the similarity of response
functions it is reasonable to assume that higher-ordered Interactions
are negligible and measure differences arising principally from
experimental error. Thus the mean, of the sum of squares, of these
Interactions give an estimated value for the variance of an effect,
"having five degrees of freedom. The square root of this value is an
estimate of the standard error.

The level of statistical significance chosen for this study was p-.01.
In order to select the statistically significant main effects and
second order interactions multiply the standard error by tl-p/2=4.032
any wmin effect or interaction greater than this product is considered
"statistically significant.
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5.31 Summary of aigzificant effects

Table 5-0 On the following page is a summary of all detected main effects and
2nd ordir interactions which were siSnificant at the pmO.O1 level. In addition
sections B2, BS and 54 provide detailed anal:-sis of the import bill and total
product consumption. The analysis of the remaining output variables is
straight forvard and available from the author upon request. Each column and
subsection of the analysis reports on the univariate analysis of variance of
the selected outptit variable. No attempt was made to perform a multivariate
analysis of variance since model is completely deterministic and not r
stochastic.
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SO51 Summary of esinificant effects

Table b -0 os the foylloing page "r a summary of all detected main effects and
2nd order Interactions which werf* u.8nificant at the p-0.01 level. In addition
sections 32, 13 and 34 provide detailed analysis of the import bill and total
product consumption. The analysis of the remaining output variables In
straight forvard and available from the author upon request. Each column and
eubeection of the analysis reports on the univariate analysis of variance of -

the selecte~d output variable. No attempt was made to perform a aultivariete
%. analysis of variance since wmdel is completely deterministic and not

stochastic.
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32 Analysis of the U.S. Import idll

This section has been included to demonstrate the use of factorial designs
to find errors within complex computer models. A change of $21.0 billion
in the U.S. Import bill due to a change in refinery configuration is
unreasonable. This result prompted an investigation into the method of
calculating the U.S. import bill and the correction of the appropriate
code. The result of the revised U.S. import bill Immediately follow this
section.

There seemed to be appreciable 2nd order interactions between product
price elasticities , refinery configurations, and the crude pattern when
the model estimates the U.S. import bill. Therefore, the first two sato
of input factors had to be evaluated Jointly with the crude patterns.
The two-way diagrams of figure B-1 indicate the nature of these
interactions.

During a 50 percent closure of the Persian Gulf with a uniform drawdown
of 3 M4BD from the SPR, the model estimated that if the ALT set of
elasticities are correct, rather than those compiled by the contractor
(CON), the import bill will be $11,297 million less. The change in
product price elasticities had no effect on the original estimate of the
U.S. import bill in the BAIl case.

In a business as usual environment, the model estimates that a change in
the refinery configurations from the 1978 configuration to the estimated
configuration in 1985 increases the import bill by $10.9 billion. With a
50 percent closure of the Persian Gulf and a uniform drawdown of the SPR
of 3 M4BD, the effect of the change in refinery configuration widens to
$21.0 billion end all ltvals are lower.

The SPR composition did not have a statistically significant effect when
the model esnimated the U.S. import bill over the levels of input factors
tested.
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U.S. import bill in millions of dollars

hain ffects estimate

Product price elasticities -5648 *

Refinery configuration 15971 *

Crude pattern/availability -7340 *

Composition of the SPR 558

2nd Order Interactions estimate

Product price elasticities X
Refinery configuration -902

"Product price elasticities X
Crude pattern/availabLlity -5648 *

Product price elasticities X
-, Composition of the SPR. 1258

Refinery configuration I
Crude pattern/availability 5041 *

Refinery configuration X
Composition of the SPF 839

Crude pattern/avaLlability X
Composition of the SPR. 563

estimated standard error 767
level of statistical significance 3146
at p loes than .01

* significant effects at p less than .01

Table 1-3
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33 Revised Analysis of the U.S. import bill

The previous conclusions of the import bill raised some serious questions on
the techniques used within the model to estimate the bill. Further
"investigations lead to the discovery of en error within the software which
wae responsible for $21.0 billion increase. The error has subsequently been
corrected and the analysis of the corrected version of the import bill
appears below.

There are perceptible 2nd order interactions between product price
elasticities, the composition of the SPi, the refinery configuration, and
the crude pattern when the revised model estimates the U.S. import bill.
Therefore, the first three sets of Input factors must be evaluated jointly
with the crude pattern. The two way diagrams of figure B-2 indicates the
nature of these interactions.

During a 50Z closure of the Persian Gulf with a uniform drawdown of the SPR,
the model estimates that if the ALT elasticities are correct, rather than
elasticities set CON, the U.S. Import bill will be $10.6 billion less.
Under the sams interruption, the effect of a totally sour SPR rather than a
totally sweet SPR will increase the import bill by $2 billion. With the
business as usual crude patterns, neither the change In product price
elasticities nor a change in the composition of the DPR has an effect on the
estimated U.S. Import bill. The model estimates that upgrading the refinery
configuration decreases the import bill by $0.2 billion with a business as
usual crude pattern. During an interruption, this same upgrading may reduce
the import bill by $1.1 billion.

In comparing the revised estimate of the Import bill with the Initial
estimate of the Import bill, two changei are moot apparent. First, the
initial estimates of the import bill estimates that the average change due
to upgrading the refinery configuration increased the Import bill by $16.0
billion. An increase beyond reason, especially when one expects a
reduction. The more reasonable result of an average decrease of 0.6 billion
was estimated in the revised run. Secondly, the composition o. the SPR does
not have a statistically significant effect over the range of nput factors
tested In the original estimate of import bill, but it does in the revised
version.
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Revised U.S. import bill in billions of dollar"

Main Effects estimate ,

Product price elasticities -5.26 *

Refinery configuration -0.64 *

Crude pattern/availability 18.01 *

Composition of the SPR 0.96 *

2nd Order Interactions estimate

Product price elasticities X
Refinery configuration -03.219

Product price elasticities X
Crude pattern/availability -5.26 *

Product price elasticities X
Composition of the aPR. -0.11

Refinery configuration XCrude pattern/availability -0.44

Refinery configuration X
Composition of the SPR -0.01

Crude pattern/availability X
Composition of the SPR. 0.96 *

estimated standard error .11
level of statistical significance .42
at p loes than .01

* significant effects at p less than .01

Table 1-'

IL
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34 Analysis of the Total U.S. consumption of products

There are important 2nd order interactions between elasticities, the
composition of the Sn, refinery configurations, and the crude pattern
which effect the estimates of total consumption of products.
Therefore, each of the first three sets of input factors must be
evaluated jointly with the Input factors representing the crude
pattern. The three two-way diagrams depicting the nature of the
interactions appear in figure B-3.

During a 50 percent closure of the Persian Gulf, the use of the ALT
elasticities rather than the CON elasticities decreases the estimated
total U.8. consumption of products by 933 MBD. Under the same
Interruption, a sour S1r produces an estimated increase in the total
consumption of products by 237 KID over use of a sweet SPR.

When using the BAU crude pattern, the model estimates that neither
variable has a statistically significant effect on the total U.S.
consuption of products.

With a crude pattern representing the RAU case, upgrading the refinery
configuration from 1978 to 1985 increases the total U.S. consumption
of products by about 22 )4BD, whereas the same upgrading during a 50
percent closure of the Persian Gulf with a unifom drawdown of the SPR
of 3 M9BD decreases the total U.S. consumption of products by about
155 HBD. This is the only example in the study of a crossed pattern
and Is wurthy of further Investigation. This crossed pattern is
contrary to anticipated results.
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The U.S. total product consumption in 45BD

Main Effects estimate

Product price elasticities -466 *

Refinery configuration -67 *

Crude pattern/availability -2817 *

Composition of the SPR 118 *

2nd Order Interactions estimate

Product price elasticities X
Refinery configuration -20

Prodict price elasticities X
"Crude pattern/availability -466 *

Product price elasticities X
Composition of the SMR. 24

Refinery configuration X
Crude pattern/availability 89 *

Refinery configuration X
Composition of the SPR -8

Crude pattern/availability X
Composition of the SPR. 118 *

estimated standard error 16
level of statistical significance 66
at p less than .01

C significant effects at p less than .01

Table B-5
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Cl Results

"The correspovding, results of the experiment were:

a. 8ignificsnt differencec were detected in the United States crude oil and
product Import patterns associated with drawdown of the two SPR types, but
relatively little differences in the level and pattern of product demands
supplied. Of the products examined, only the consumption of residual fuel
oil we significantly effected by a change in the composition of the SPR.

b. Significant differences in all examined variables were detected as a result
of changing the availability of crude oil.

Sc. Changes in the refinery configuration create small, but significant effects
in several measured variables. However,.changes in the refinery
confisuration should not effect the recommended six of crude oil to be
stored in the reserve since the 2nd order refinery configuration X
composition of the 5PR interaction is not statistically significant for the
variables tested.

d. Significant differences in the pattern of US demands, for several products,
resulted from the application of the alternate sets of product demand price
elasticities. However, changes of the elasticities should not effect the
recommended mix of crude oils to be stored in the reserve since the 2nd
order elasticity X composition of the SPR interaction is not
statistically significant for the variables tested.

Recomendat ion

The factorial design detected errors within the US import bill and several
other output variables. It was recommended that this model be corrected before
It was put Into production use.

Post Script

In addition to the procedure described in this paper, other checks of the
qoality of the software were made including an analysis of the estimated
results for the year 1978 against historical data. The contractor incorporated
"the recommended corrections and in the fall of 1982 the corrected model
produced results which were diametrically opposite of earlier runs.
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Nonparametric Probability Density Estimation

for Data Analysis in Several Dimensions

David W. Scott

lice University
5md.q Houston. TX 77251

-Our purpose this paper is to illustrate how nonparametric probe-

bility density estimates, in particular the corresponding contour

curves, are a useful adjunct to scatter diagrams when performing a prel-

iminary examination of a set of random data in several dimensions. For

a preliminary approach we generally want to perform fairly simple tasks

with free-form techniques to uncover structures and features of interest

in the data. Such procedures are often graphical and unlike summary

statistics seldom lead to much compression of the data. Tukey~h•7-)--•-

presents a wealth of such procedures. One which well illustrates the

power and flexibility of these preliminary procedures is the running

* median smoothing algorithm for time series data (with resmoothing of the

-' rough and the like). Other graphical techniques for multivariate data

are presented in Tukey and Tukey (1981).

For preliminary viewing of one-dimensional data, both scatter

diagrams and frequency curves such as histograms are widely and success-

fully employed to examine clustering, tail behavior, and skewness of

IThis research was supported in part by the Army Research Office

under DAAG-29-82-K-0014 and by NASA/Lockheed under P0-0200100079. .
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data. For bivariate datea scatter diagrams are in practice widely pre-

:erred to bivariate frequency curves. Scatter diagrams of three dimen-

sional data may be realized by viewing a projection of the data on a

rotating plane represented by the screen on a computer graphics termi-

nal. For higher dimensions carefully selected projections may also be

viewed, and sophisticated techniques have been developed, and are evolv-

ings for choosing good projections (Friedman and Tukey. 1974).

Apparently the success of frequency curves in one dimension has not

readily extended to higher dimensions. It is an open question as to the

number of dimensions that may be successfully visualized with a non-

parametric density estimator under various conditions (sample size, for

example). It is our purpose to illustrate the power of preliminary fre-

quency curves as an adjunct to viewing scatter diagrams.

"A We shall examine a data set which contains information on the

status of the coronary arteries of 371 men suspected of having heart

"disease, having experienced episodes of severe chest pain. These data

have been more fully described and analyzed$ see Gotto, AL &, (1977)

and Scott. aL &1. (1978). After visual examination of the coronary

' arteries by angiography, 51 men were determined to be free of signifi-

cant coronary artery disease. It was of interest to compare the levels

of blood fats, plasma cholesterol and plasma triglyceride concentra-

tions, between the group of 51 disease-free males and the group of 326

diseased males. The scatter diagrams of these two data sets are

displayed in Figure 1. Patients with elevated levels of cholesterol and
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Figure 1. ScatLar Diagrams
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triglyceride are evident among the diseased males. This observation is

difficult to evaluate in light of the large difference in sample sizes.

However, it is unlikely that a larger sample of 320 disease-free males

would result i-a a scatter diagram similar to that of the 320 diseased

males.I.., To obtain a nonparametric density contour plot we computed a

bivariate product kernel estimate (Epanechnikov. 1969) given by

Uyi x 1 iy
._•fix.y) K( I )K(- y-

using a quartic (biweiSht) kernel

K(s) T 1(1-s2)2 '[-.lll() (2)

and preliminary values of the smoothing parameters given by

"hx r 2Rn/6 where s represents a trimoed and pooled estimate of the

stAndard deviation for the two groups with a similar expression for h

1. Density values were computed over a grid of 150 by 90 points. When

applied to the data for the diseased males, the contour plot reveals a

striking bimodal features as shown in Figure 2. The contours of equalp probability are at the ten levels 0.05 to 0.95 in increments of 0.10 as

"a fraction of the respective maximal modal levels. The density function

of the disease-free malas could be well approximated by a bivariate Nor-

msal form. Its mode coincides with the left of the two modes in the den-

sity function of the diseased males.

The contour plots have helped emphasize a feature in the scatter

diagram that might have gone unnoticed. The contour plots also aid in

X, compensating for the difference in sample sizes. The discovery of the

bimodal feature led to formulation of a complex cholesterol-triglyceride
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Figure 2. Bivariate Density Contours

m."-

Disease-free
Males

L-"

Cholesterol Cmg/Z)

Diseased
Males

Cholesterol (m/Z)"

391 ,

* .. . .. a I iI I i1* •



interaction in the model for estimating the risk of coronary artery

disease. Clinically, the difference of 50 mg/% between the two modes in

Figure 2 for the diseased males is greater than the reduction in

cholesterol by dietary intervention (which usually achieves proportional

reductions in the range of 10 to 15 percent).

Tr.Idivarl.u Dr.AU

The data presented in this section were obtained by processing

four-channel Lendseat data measured over North Dakota during the summer

growing season of 1977 and were furnished by Dick leydorn of

NASA/Houston and Chuck Sorensen of Lockheed/Houston. The sample con-

tains approximately 21.000 points, each representing a 1.1 acre pixel.

covering a 5 by 6 nautical mile section. On each pass over an indivi-

dual pixel by the Landseat satellite, the four channel readings were com-

Sbined into a single value that measures the *greenness* of the pixel at

that time. The greenness of a pixel was plotted as a function of time

from the five passes during the growing season. Finally. Badhwar's

(1982) growth model wasn fitted to this curve. This model bas three

parameters iich are contained in each trivariate data point. The first

variable Wx) gives the time the "crop" (if any) ripened. The second

variable (y) measures the approximate time to ripen. And the third

variablo (a) measures the level of 'greenness' at the time of ripening.

Although it is natural to group these data by actual type of ground

Scover for classificainn procedures, we have not done so here.

It is not possible to present a satisfactory picture of a three-

dimensional scatter diagram of these data for this article. However, on
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an ARD512 terminal with 512 by 512 resolution, a projection of these

data onto the screen typically displayed only 4000 points, the rest

being "hidden* behind displayed points. Viewed from several different

angles, various shapes and features in the data were easily perceived.

Color was used to indicate the level of the variable perpendicular to

the screen.

We can present density contours of an estimate f(x~y~z). Consider

an equiprobable contour at level cl that is. consider those points

(zoyse) satisfying the equation f(xyou) c c. The solution of this

equation for a smooth density estimate f is a smooth surface (or sur-

faces) in 1 3 This surface may be displayed by intersecting it with a

series of planes displaced equal distances along the co-ordinate axes,

in the following, along only the x and y axes. In Figure 3, we display

the surface for c a 1% of the maximal mode value. Comparing Figure 3 to

the corresponding scatter diagram on the same projection plans reveals

how surprisingly little of the data space is enclosed in this contour.
14

In tbe scatter diagram our eyes focused on rays of points that seemed

interesting but represented only a small fraction of the data. Also

notable in Figure 3 is a cylindrical shape disjoint and behind the

larger surface. This feature was also clearly visible in the scatter

diagram and represents acres in which sugar beets were grown.

Apparently the method by which sugar beets are harvested leads to a

singularity in the estimation of the growth model parameters with y O. P
'Ii

Expanding the scale by a factor of 2 while retaining the same

center as in the c a 1% picture, we show the contour shapes at levels

c 102, 30%, and 502 of modal height. Notice how each contour shape

3.
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Figure 3. Trivariate Density Contour.
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"fits" inside the preceding one. Also observe how multimodal features

appear in this space. Three modes ore shown in this sequence. On a

color graphics terminal, we may simultaneously view these and other con-

tours by using different colors to draw each contour.

Again, the density plots have complemented and added to our under-

standing of these date. It is easier to see inside the data cloud with

this representation and also makes rotation of the data cloud less

important.

A. gruDlt±QDAI nmIanals4tanm

A new algorithm and density estimator were developad to display the

trivariate contour plots and we hope to report on it in another paper

(Scott. 1983b). Speed is an important factor in an interactive environ-

ment. The kernel method used in the bivariate case becomes excruciat-
ingly slow when presented with 21.000 points in three dimensions. In

real times a few minutes were required on a Vex 11/780 to compute the

bivariate kernel contours for 320 points on a 150 by 90 mesh. To gen-

orate the pictures in Figure 3. we evaluated the density on a 30 by 30

by 30 mesh for 21.000 points. A straightforward kernel estimator would

have required several hours to computel

The histogram estimator is extremely efficient computationally. but

very inefficient statistically -- and relatively more inefficient in

higher dimensions than kernel methods. One recent discovery indicates

that. the frequency polygon may be a good choice of a nonparamotric den-

sity estimator since it is computationally equivalent to a histogram but

statistically similar to a kernel estimate (Scott. 1983a). However, the
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frequency polygon in several dimensions suffers from sensitivity to

choice of cell boundaries. The new algorithm addresses this problem and

is asynptotically equivalent to a certain kernel estimate. Other fast

preliminary estimates in one and two dimensions may be obtained by

numerical approximation of kernel estimates in place of statistical

approximation, which we prefer.

We do not really know for how many dimensions nonparametric density

estimates will be useful and feasible. Scatter diagrams have been used

in a highly interactive environment to visualize nine -dimens ional data

(Tukey, Friedman, and Fisherkeller, 1976). Many possible strategies may

be envisioned for using color and motion to examine data in more than

three dimensions. We expect much progress in this area. But for larger

and larger data sets requiring sophisticated analysis, we believe that

density-based methods will be both efficient and effective.
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LOGISTIC SUPPORTABILITY

One afternoon of the 28th Conference on the Design of Experiments
in Army Research Development and Testing was devoted to the
important area of Logistic Supportability. First on the agenda
was the presentation by OTEA. It was entitled "Improving the Test
and Evaluation of Integrated Logistics Support in OT," and is
p ublished in these proceedings in the format of a slide presentation.
The DARCOM presentation came next and carried the title
"Supportability - Requirements, Uesign.Test and Evaluation."
Unfortunately, no printed matter was submitted for publication
concerning this address. The final presentation, "Logistic
Supportability Testing and Evaluation During OT," was given by
TRADOC personnel. Their report directly follows that made by OTEA.
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ABSTRACT: •Army policy requires testing and evaluation of the logistics
supportability of a system in the acquisition process. The thrust is to assess
both the adequacy of system design for support and the adequacy of the support
package developed with the system. While the policy is generally sound, the lack

of a comprehensive Army methodology for test and evaluation of logistics support-
ability during operational testing has weakened implementation of the policy.

Presented first i a review of the current atatus of operational test and
evaluation of logis;tcs supportability. The key inaredients to effective and

comprehensive logistics supportability test and evaluation are identified. For each
ingredlunt, problem areas with proposed solutions are discussed, thus providing a
TRADOC perspective of where we are and where we should be.

Following tho rovlow is THADOC proposed methodology for oporatLonnl testLng and
evaluation of logistics supportability. All phases of operational testing are
addressed with incorporation of proposed solutions for problem areas.

455



LOGISTICS SUPPORTABILITY (LOGS)
OPERATIONAL TEST AND EVALUATION (OT&E)METHODOLOGY

1. PURPOSE. This paper provides a discussion of key ingredients, current

problem areas and proposed solutions for accomplishment of effective LOGS test

and evaluation during operational testing (OT). For the purposes of this

paper, LOGS is defined as:

Logistics Supportability (LOGS). The characteristics of the system

(materiel and crew) and the related support elements (support concept, support

materiel, and support personnel) as they contribute to the retention and

restoration of the materiel system in an operational effective status.

Therefore, I0GS is the way 'these three elements affect and are affected by the

materiel system.

2. Comprehensive effective OT&E of the supportability of a system can be

divided into three categories: the decision prooes3, analysis and resources.

Within each of these categories, there are key ingredients to an effective

logistics evaluation. Below is a discussion which provides a list of dilemmas

with proposed solutions for each key ingredient. Proposed LOGS operational

test and evaluation methodology providing specific guidance is at Annex A. It

is assumed that waivers will not be granted to any of the key ingredients.

When a waiver is granted, it becomes a dilemma in itself.

a. Decision process.

(1) Recognition of LOGS as a mission oriented issue.

DILEMMA - Decision makers often perceive operational effectiveness

and combat power issues as having higher visibility and being the most mission

oriented, therefore, are highest priority. Thus, in the battle for resources,

LOGS issues are ofLen sacrifioed, since supportability issuei which require
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greater time and marpowe- than effectiveness or corbat power.

SOLUTION - All LCGS issues must be critically reviewed by the

decision maker at each decision point with data provided showing LOGS inpact

on combat power.

"(2) Acquisition schedule to accommodate effective LOGS OT&E.

DILE4MA - The acquisition cycle is decision milestone driven.

Therefore with CT following developmerntal tests (DT), as slips occur in DT,

the time available for OT decreases. Thus effective LOGS OT&E is compromised.

SOLUTION - Existing policies need to be enforced. Additional

jpolicies needed are as follows:

.(a) When lip occurs in critical program milestones (e.g. UT start

or complete), subsequent milestones will be slipped accordingly.

(b) When critical LOGS elements (e.g., system peculiar Test

"Measurement Diagnostic Equipment (OHDE) and generators, DS and CS support

package, etc.) will not be tested in OT II of the system, CT II testing of

these support items will be accomplished prior to their type classification.

"This currently happens for training devices since they have a separate

requirement document. However, other items encompassed by the system

requirement document do not undergo this necessary testing.

"(3) Test and logistics test resources waivers held to a minimum.

DILEMMA - Current waiver procedures are confusing. Policy (AR 71-3,

AR 700-127, etc.) provides a myriad of waiver approval procedures and

authorities dependent on resource, test, and system category of concern and

situation. Proced'res and guidelines are not clear or consistent for all

situations.

""OLUTION - Have only one procedure for waiving tests and test

resources with well defined procedures and guidelines.
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b. Analysis.

(1) LOGS OT&E methodology understood and consistently applied across the

Army comun'ity.

DILEMMA - There , no DA published baseline methodology on LOGS OT&E

to guide and harmonize the conmunity. Recently drafted DA pamphlet on

"supportability test and evaluation provides broad OT guidance but refers to AR

71-3 and PA Pam 71-3 for specifics. These specifics have not been

incorporated. TRADOC developed and implemented a detailed methodology in

coordination with all the Army community in 1977. However, this methodology

has riot been since updated 6r sanctioned for all to use by DA.

SOLUTION - A methodology be developed and incorporated in a DA

pamphlet.

(2) Critical supportability issues and criteria clearly and appropriately

defined.

DILEMMA - Issues and criteria have not effectively encompassed

operational readiness of system and logistics burden emplaced by system.

SOLUTIONS:

"(a) Set three critical LOGS issues, (1) operational readiness,(2)

logistics burden, and (3) *system support package deficiencies.

*System support package (SSP) - A composite package of support elements in

initial issue quantities for a materiel system in the operational (deployed)

environment. For OT it is a combination of test support packages provided by

materiel, combat and training developers. At OT II content is scaled

commensurate with the force slice being played to evaluate organizational,

direct support and general support capabilities.
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(b) Insure requirenents documents provide a sound basis for defining N
critical criteria.

"(3) Appropriate evaluation techniques defined and available.

"DILEBfA - Current methodologies in TRADOC or DARCOM have not provided

analytical techniques for establishing logistics burden criteria and

evaluating operational readiness or logistics burden aohievement.

.2 SOLUTIONS:

(a) Provide modeling and analysis routines for developing criteria

for logistics burden. Recently published TRADOC/DARCOM Pam 71-11 provides

"techniques for developing system readiness objective (SRO) requirements which

also apply to criteria.

(b) Provide modeling and analytical routines for evaluating

achievement of readiness measures and logistics burden.

(c) Computerize modeling and analytical routines and make available

to all OT issue-criteria developers, testers and evaluators.

c. Resources.

(1) Operator, crew, maintenance and supply personnel in the appropriate

specialty and trained as planned when fielded.

DILEMMA - Same as addressed for decision process key ingredients.

SOLUTION - Same as addressed for decision process key ingredients.

Conduct of OT I is critical to determining personnel skill and training

requirements for developmnent during following phase.
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(2) System and support gear (hardware and *software) suitably mature for

"test.

DILEMMA - Same as addressed for decision process key ingredients.

SOLUTION - Sane as addressed for decision process key ingredients.

Conduct of OT I is critical to identifying materiel system and support gear

deficiencies for improvement during next phase sO that sufficiently mature

items ere provided for OT II.

(3) Sufficient slice of the force to place proper logistics demands on

"the support structure.

"DILEMMA - OT test players and data collectors are provided from

active FORSCOM units which have other missions thus constraining their

availability for test.

SOLUTIONS:

(a) The evaluator must utilize to the maximum other data sources.

(b) Work with DT testers to incorporate representative trained "

.1 troops in their test as maintenance personnel or perhaps have DT off system

repairables shipped to the OT site for maintenance.

"(c) Work with materiel developers to have representative trained

troops used in their logistics demonstrations and PTEAR.

(d) Require both OT II and FOE be performed on a routine basis and

combine data sets to degree possible for a more comprehensive evaluation prior b

to fielding.

*Support software - Includes entire set of programs, procedures, and related

documentation such as technical manuals and computer programs necessary for

supply, maintenance and training.
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(e) Evaluation models addressed above must provide for expansion

beyond the unit and support structure sizes tested to provide a representative

slice of force structure.

(f) Consider combining several small scale OT occurring in same year

into a single larger scale test.

(g) Explore use of DA sample data collection program, National

Training Center (NTC) and field exercies (e.g., REFORGER) to expand

"supportability data base during initial fielding.

%; (4) Sufficient test time to properly exercise the critical support

elements.

DILEMMA - While our test guidelines use RAM as a. standard for

determining the test length, there is no assurance that all critical LOGS

elements will be functioned, including both *primary and **secondary logistics

systaMs.

SOLUTIONS:

(a) Have simulated maintenance during OT such that a suitable

percentage of critical tasks are accomplished at each maintenance level

"through GS.

(b) Conduct sample data collection prograns on a routine basis with

initial fielding and provide results to OT evaluators and testers.

*Prima"y support system - Personnel, maintenance and supply system which

responds directly to the materiel system under consideration.

**Secondary support system - Maintenance and supply system which responds to

, the primary support system.
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(c) Same as (f) for key ingredient concerning force slice.

(5) Adequately defined and implemented tactical scenario and support

concept for test.

DILEMMA - Test support packages provided by materiel, combat and

training developers for OT are often incomplete or do not properly define

scenario and support concepts.

SOLUTIONS:

(a) Improved quality control of support packages.

(b) Improved waiver approval procedures as described above for the

decision process key element.

(a) Readiness for test reviews conducted and results brought to

decision makers attention.

(6) Effective data collection system to satisfy issues and criteria.

DILEMMA - Data collection system is fragmented due to look of,

standardization, coordination, and communication across the Army OT community

* reaulting in duplicated efforts.

.4 SOLUTIONS:

(a) Use all data sources.

(b) Simulated maintenance actions during OT.

(e) Develop a standard set of programs for OT to assess repair parts

and POL consunption, stock number analysis of tools, 7MDE, and special

equipment, assess off-line recoverable repairables and training, andU.'

validating and verifying manuals, and maintenance allocation charts. ADP

resources should be used to the maximum degree for this methodology.

(d) Obtain fran Soldier Support Center the profile of the

qualifications for MOS test player personnel. This is very critical ,hen a

small personnel saMple is being used since it is possible to obtain people not
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in the profile but having the MOS.

(e) Data collectors should be carefully chosen and trained with

specific skills and therefore, they would not solely perform the function of

data collection but be a system evaluator.

(7) Personnel adept and qualified in logistics supportability on both the

test and evaluation teams as well as in those agencies responsible for

defining the issues and criteria.

DILEMMA - Probably the most serious deficiency in LOGS testing and

evaluation is the lack of trained logistics testers and evaluators. Not Only

are individuals assigned to a testing or evaluation agency without training in

techniques of testing or evaluation, but they are not trained in the specific

area of logistics supportability.

SOLUTION - Match SC personnel with the system to be tested and train

them in LOGS management techniques, LOGS quantitative techniques, and

logistics support analysis. These courses are readily available and should be

mandatory for all logistics testers and evaluators prior to assigrment.

Likewise, civilian logistics test and evaluation personnel need similar

training.

3. CONCLUSION.

In conclusion, the current regulation guidelines provide 2 system for

addressing LOGS issues; however, total adequacy of LOGS evaluation is resource

dependent and trade-offs generally reduce the credibility of operational test

results for logistics support, and unless these problems are solved, thi

peroeption of inadequate LOGS testing and evaluation will persist.
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ANNEX A

TEST AND EVALUATION
LOGISTICS SUPPORTABILITY (LOGS) IN OT

1. INTRODUCTION. The test and evaluation of logistics supportability is

addressed in numerous test related documents within the LS Army. One of the

dilemzas main addressed in tne paper is that there is no DA operational test

and evaluation procedure dooumented and/or implemented to assure that

logistios is ccmprehensively evaluated. The methodology proposed herein to

fill this Dept of the Army void is a refinement of the methodology developed

by and presently being used within TRADOC. It is assumed that the remaining

dileras discussed in the main paper have been re~olved.

2. DEINITIONS. For the purpcesms of this methodology, the following

defi.nitions apply:

a. Logistics Supportability (LOGS). The characteristics of the system

(materiel and crew) and the related support elements (support concept, support

materiel, and support personnel) as they contribute to the retention and

restoration of the materiel system in an operational effeotive status.

Therefore, LOGS is the way the three elements, support concept, support

materiel and support personnel, affect and vre affented by the materiel

system.

b. System Support Package (SSP). A composite package of support elements

in initial issue quantities planned for a materiel system in the operational

(deployed) environment. For OT it is a combination of test support packages

providew by materiel, combat and training developers. In its preliminary

form, it is provided before and evaluated during developmental and operational

testing and evaluation :o validate the organizational, direct support, and
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general support maintenance capabilities. For logistic supportability

* testing, it normally includes:

(1) Support and test equipment.

(2) Trained personnels (including the training programs, materials,

"devices, and ammunition needed to develop those skills).

(3) Supply support.

(4) Technical logistic data.

(5) Facilities.

(6) Computer resources.

(7) Maintenance support.

(8) The logistics concept.

-, c. Primar, Support System. Personnel, maintenance and supply system

which responds directly to the materiel system.
d. Secondary Support System. Maintenance and supply system which

responds to the primary support system.

e. Logistics Support Concept. The overall "how" the logistics system is

set up and administered to support the materiel system. The support concepts

provide the organizational structure and responsibilities for accomplishing

the maintenance and supply functions ut each level. This includes the

identification and allocation of hardware, software and support personnel to

each supply and maintenance level.

f. Logistics Support Materiel. Those hardware and software items needed

for supply, maintenance and training support. Logistics support hardware

includes, test measurement and diagnostic equipment, special and conmon tools,

repair parts, resupply and rearm vehicles, training devices and similir

equipment assigned to supply, maintenance and training units. Logistics

support software includes the entire set of programs, procedures, and related
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f, documentation such as technical manuals, lubrication orders, computer

* programs, etc., necessary for maintenance, supply and training.

g. Logistics Support Personnel. Selection criteria and training required

for operator, crew, maintenance and supply personnel. Personnel selection

entails definition of duty requirements and thl skills and characteristics

needed to retain the system in or vben failure occurs, restore it to an

operationally effective condition. The amount and type of training is a

function of the system complexity and the designated military occupation

specialty (MOS).

h. Materiel System. Mission item being acquired for %hich LOGS is to be

evaluated. Qharaoteristios include all factors of design Which affect

logistics support. Examples are, design for maintainability, human factors

and safety affect the efficiency and speed of maintenance operations.

. Hardwars requirements for special handling, training devices, frequency of

calibration, 1MDE, transportability, resupply equipment affect end item

logistics. Design for standardization within the Army and rationalization,

standardization and interoperability (RSI) with other services and NAMO is

also considered.

3. EVALUATION PROCESS. To assure that a materiel system in the aoquianition

cycle can be fully supported when fielded, logistics supportability

*3 assessments should be conducted during every phase of the acquisition cycle.

Geniune logistics supportability assessments do not just happen as a result of

operational testing. Evaluation planning is key to timely and effective

• ', operational LOGS assessment as with any other system performance parameter.

The first step in the evaluation process is the identification of issues with

associated criteria which must be addressed by the decisioin milestone of the
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acquisition cycle. The combat developer or training developer provides the

issues and criteria to the evaluator. Subsequently, the evaluator must

identify, for a given program, the evaluation approach or methodology, the

analysis to be performed, the data required and the sources of the data. This
evaluation planning information is documented in the independent evaluation

plan (IEP). Required operational tests (OT) are performed Uy the tester.

Once the required data becomes available, the evaluator performs the

prescribed analyses to evaluate each issue and develop his overall assesment

of the system and testing done to date. Hence, evaluation of LOGS involves

the following steps:

a. Identification'of critical issues and criteria.

b. Evaluation planning.

c. Perform studies/conduct testing/collect data.

d. Evaluation.

4. ISSUES AND CRITERIA. The first step in effective LOGS evaluation is

identification of issues and criteria which must be addressed and data

provided for an adequate resolution by time of the decision milestone. There

are three critical supportabilitiy issues to which decision makers need

answers before making the production decision as follows:

a. Does the system, when supported in accordance with the approved

logistics concept, achieve required operational readiness?

This issue examines both the design of the system for effective

support and the ability of the support system to rapidly respond to the system

need for maintenance. Operational availability or other system readiness

objective (SRO) measure will be the p--incipal criteria for this issue.
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TRADOC/DARCOM Pam 71-11 provides guidance on development of these values and

also may be used for guidance in evaluating the SRO.

b. Does the system impose excessive burden on any of its support

elements?

This issue examines demands placed on critical support elements and

resources required and available to meet these needs. Unit quantity rather

than single system support burden is of dominant concern. In those cases

where the SRO (issue "a" above) 'is not achieved, two levels of evaluation will

be made. One is the resources required for the achieved SRO. The other is

estimated additional resdurces necessary to achieve the required SRO.

Criteria will include measures such as: 2 MOS XX man-years at organizational

level and 2000 gal MOGAS per day.

c. Are there any deficiencies in the system support package?

This issue examines the completeness, appropriateness, accuracy, and

adequacy of logistic elements in the test support packages provided for OT.

This issues is subdivided into four key areas which encompass the AR 700-127

Integrated Logistics Support elements of concern. These four areas are

logistics concept, support materiel, support personnel and materiel system

characteristics. Criteria for this issue ara generally subjective requiring

judgment or direct observation by testers. For example, maintenance tasks and

resources allocated at proper level.

d. Issue and criteria dendritic. A complete dendritic of the three

issues is provided at Appendix A.

5. EVALUATION PLANNING.
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a. Materiel Acquisition Phases. To assure that a materiel system in the

acquisition process can be effectively supported when fielded, supportability

assessments occur during every phase of the acquisition process. However,

OT&E evaluations occur in three phases with emphasis as follows:

(1) Demonstration and Validation Phase. DT I and OT I are conducted

during this phase using advanced development, breadboard or brasaboard

prototypes. Generally, contractor or developer taming is provided and

concentration is on the developmental system. Early doctrine, organization

and logistic concepts are available. Generally, there is competition between

alternative system concepts to continue to next phase. The evaluation focus is

on:

(a) Analyses of supportability merits of the competing system.

(b) Identify system and support concept modification needed.

(W) Identify special requirements for personnel, 7hIs, and training to

support development in the next phase.

(d) Refine OT I issues and criteria and identify any new ones for OT II.

(2) Full Scale Engineering Development Phase. This is the phase leading

to full production decision with that rare exception vhere Low Rate Initial

Production (LRIP) is authorized. DT II and OT II tests occur. Answers to the

three critical issues (readiness, burden and system support package) are

needed.

(3) Production and Deployment Phase. Evaluation conducted in this phaso

concentrates on answering unanswered or unresolved issues and verification of

support deficiencies from the previous phase.

b. Analytical methods. For each phase of the materiel acquisition

process, once the LOGS issues and criteria have been finalized, the next step
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* is to establish the evaluation scheme to ascertain the analyses techniques to

be utilized and and identify the data requirements and sources.

(1) Operational Readiness. Readiness is a function of system

* utilization, maintenance requirements and administrative and logistics

downtime. Normally, the readiness parameter for Army systeMs will be

*operational availability. 'The equation for operational availability is as

follows:

0T + ST

Ao z _ _ _ _ _ _ _ _

OT + ST *TM+ TPM +TALUT

* Where:

OT x operating time during a given calendar time period.

ST a Standby time (not operating, but assued operable) during that

* period.

TCM a Total corrective maintenance downtime in clock hours during that

period.

TPM zTotal preventive maintenance downtime in clock hours during the

0T period.

TAUDT x Total administrative and logistics downtime spent waiting for

parts, maintenance personnel, or transportation during the time stated period.

Furthermore, TALDT is a fuznction of (1) operatioiial Mission reliability, (2)

* percentage of operational Mission failures requiring parts, (3) probability of

required part being on the Prescribed Load list and Authorized Stockage List,

(~4) probability of required parts being in stock and (5) delay times

encountered at various levels of maintenance. Predicted values of the above

parameters are used to develop the Ao value. Once the system is sufficiently
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-*,* matured and the logistics support develcped, actual system data may replace

predictions to give a better quantitative estimate of the equipment and the

support system to achieve the SRO. Although Ao cannot be measured directly in
an operational test, testing can generate data on the maintenance requirement,

operational mission reliability, percentage of operational mission failures

requiring parts, and the probability of required parts being on the stockage

lists at various levels of maintenance. Substituting this data and utilizing

the remaining data used in developing the requirements, one could develop a

more valid estimate of the SRO. Sensitivity analysis could indicate needed

1 improvements such as the pay off for improving logistics support
-• •.characteristics of the system or refining the PLL or ASL.

(2) Logistics burden. The purpose of these analyses is to determine the

strengths and weaknesses of planned support. Basically, maintenance, supply

and transportation demands placed on the support system are compared against

the the resources provided in the planned support system. Consider the

examples at Appendix B as follows

(a) In the manpower analysis example, although the reliability

"requirement is nearly met, the reliability degradation translates into

approximately three times as many failures as projected. Accordingly, if no
reliability improvement is obtained, an additional 43 maintenance personnel

will be required to support the system.

(b) In the fuel consumption analysis, meeting half the criteria for fuel

1~ij consumption translates into double the requirement tankers, bladders and

manpower supporing at the resupply point than programed for the system.

Without redesign or adding these needed assets, a fifty percent reduction in

operational readiness (i.e., operational availability) will result.
M() The TMDE analysis demonstrates how the difference between force slice
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tested arri to be supported in the field impacts burden. While no problem with

queing at the THDE device was observed in test, considering the force slice to

be fielded shows a qieing problem will result. The analysis also suggests how

consideration of ComLIt losses can impact the analysis conclusions. While the

first analysis concludes operational readiness (i.e., operational

availability) will be significantly degraded because of the queing problem,

considration of combat losses may result in determining the allocation of 7MDE

adequate. Expected systems lost in the first three days of battle could

remove the queing problem.

(d) At present there is no documentation or regulatory guidance requiring

a specific logistics analysis to be performed. It would also be beneficial to

document in future DA pamphlets several examples of typical maintenance,

supply and transportation burden analyses. Mowever, it should be realized

that there is no "cookbook" method; evaluations and analysis techniques must

be tailored to the specific system. Analytical techniques should be kept

simple and provide timely response. Modeling such an Maintenance and

Logistics Analysis (MALA) analysis is too complex and not responsive.

(3) Support Package Deficiencies. Test support packages provided by tho

materiel, combat and training developers define the support structure and its

operation and provide the personnel, matariel and software upon wiioh it

functions. Errors and inadequacies are generally found in these elemente

during conduct of test. Subjective analysis is then made of these errors and

inadequacies to determine their level of severity with regard to functions of

the support system. Further, because of acquisition program constraints or

strategy, elements may not be available at time of test. These must be

identified and asaessed as to impact on other areas. These deficiencies may

or, may not have impact on operational readiness or logistics burden analysis
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'.., above. For example, unnecessary tools would not affect either, where as,

inability to transport in C130 or C141 aircraft affects burden due to

commitment status of C5A aircraft. The analysis should result in

categorization of the errors and inadequacies as follows:

(a) Significant deficiency - makes system unacceptable for deployment or

correction involves more than the most routine engineering. Verification of

correction needed prior to full production decision.

". (b) Other deficiency - impacts system supportability but does not

constitute a significant deficiency. Verification of correction required

before or at time of initial fielding.

(a) Shortcoming - doesn't significantly impact system supportability but

correction should be made if possible. Verification of correction not

required.

c. Data Sources. Oncce the-i3sues and criteria have been defined together

with analysis techniques for their evaluation, the next step is to identify

data sources from which appropriate data can be obtained to support the

evaluation planned. Potential sources include but are not limited to the

following:

(I). OT will be the dominant data source for the independent operational

evaluation of supportability. OT is conducted with representative user

operators, crews and Units in as realistic an environment as possible.

Operations are tactical scenario driven. The support system (personnel,

equipment, software, procedures and organization) is as close as possible to

that fnr the system when fielded. However, because of limitations, other

sources should be investigated to determine if' they provide a realistic source

for data not achieveable in the OT.

(2) Consideration should be given to the possibility of combining several
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OT scheduled to occur in the same year into a single large scale test. This

may allow for a longer test with less total impact on FORSCOM resources. The

larger force slice for test would provide a more realistic evaluation of the

total support structure when fielding occurs.

(3) DT, while a technically oriented test, can provide data of benefit to

the OT evaluation. Some areas include transportability analysis, 7hDE and

calibration equipment functional accuracy and reliability, RSI compatibility,

component interchangeability, and technical accuracy of documentation. Data

on hardware failure frequency which places demands on the support system can

also be provided. However, because of differences in technical and

operational environments, demands may be significantly different fram the OT.

* It may be poss0ble to bring in trained representative troops to perform

maintenance tasks in DT which because of test duration are not expected to

*. occur in OT. Likewise a possibility exists to have DT ship off system

repairables to OT for repair. Thus, DT can fill an OT data void on personnel

selection, training, manual and support equipment adequacy, human factors and

system maintainability, for those tasks.

(4) FDTE are user tests conducted to address issues concerning doctrine,

organization and training. Same are conducted on systems during the

acquisition process. As such, these may be appropriate data sources for

issues concerning the logistics concept, personnel selection or training.

*: When conducted, these may expand the OT data base.

(5) Logistic!. Demonstration (LD) and Preliminary Teardown Analysis

(PTEAR) conducted by the materiel developer may also be a valid source similar

to DT. The LD is a special experiment to address technical logistics issues

not satisfied by other tests. The PTEAR provides data on manual accuracy by

"actually going through the procedures and performing the various maintenance
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tasks on the system.

"(6) Skill Performance Aids (SPA) verification is conducted by the

"training developer on those systems requiring SPAS manuals. Readability is

determined by using a statistically valid sample of the representative MOS

soldiers to use the manual. For other manuals, desk audits are performed by

the combat and training developers. Conducted before OT II, these efforts

serve to assure manuals received are more mature and representative of that to

be fielded. Conducted after the test, they may serve to verify correction of

manual defioiences found in test.

(7) Sample Data Collection Programs are conducted by DARCCM commands

responsible for readiness. As new systems are fielded, data collection teams

monitor the system and collect specific data as defined in a data collection

plan. These programs vary in length from six months to in excess of one year.

These are good data sources for further expansion of the LOGS data base.

Opportunity to submit data elements and other involved in this effort is

available through DARCOM.

(8) The National Training Center (NTC) may be a valid data source for

supportability evaluation during early fielding. Data collected from this

"source would provide for evaluation of supportability under varied tact-ical

soenario3. It should be noted that NTC is not to be a data collection agency.

However, it may be possible to obtain supportability dat they routinely

collect or to find work around solutions through coordination with NTC staff.

"(9) Field exercises such as REFORGER may also provide valid source for

supportability data during initial fielding. This source should be explored

to determine ability to provide suitable supportability data either through
.4

their routine data collection or special collection effort such as could be

funded by an FDTE.
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6. OPERATIONAL TEST (OT).

a. General.

(1) OT provides the mechanism where all the key supportability elements

are brought together with the materiel system under conditions of employment

most representative of that expected when fielded. These user tests are

conducted during specific phase of the materiel acquisition process for

systems to support scheduled decision reviews. Tests are scheduled to occur

after sufficient developmental testing (DT) is done to demonstrate required

technical maturity of the system and its support elements. As such, or

provides the "proof of the pudding" for operational effectiveness and

suitability (including supportability) of the system. For the purposes of

this methodology, follow-on evaluation (FOE) is considered to be an

operational test, although not so named.

(2) Testing LOGS can only be accomplished to the degree that the various

elements reflect the anticipated application in the field. In this respect,

the maturity of test support packages and the test prototype will determine

the extent to which the logistics elements can be implemented/exercised and

valid data generated. The test support packages define the logistics concept

for supporting materiel. All elements (hardware, software and personnel)
should be exercised in a realistic environment as possible to include

implementation of the support concepts as defined by the logistics concept to

obtain logistics supportability data.

(3) Typically, there are three phases during which operational testing

can occur to validate the supportability of the system in the acquisition
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cycle. Thesa are Demonstration and Validation Phase (OT I), Full Scale

Engineering Developmentz Phase (OT II) and Production and Deployment Phase %

(FOE). The latter two phases (OT II and FOE) are when system and support

maturity are such that eciprehensive and effective LOGS testing should be

oahieveable. However, the first phase (OT I) is vitally important to aiding

the materiel, combat and training developers In delivering this mature system.

and support in the latter stages. It is here that the system and support
IV _

concept is first introduced to the environment (operational procedures,

people, associated equipment, organization and battlefield conditions) in

which it must operate and be supported.

b. Testing Guidelines..

(1) OT 1. The thrust of OT I testing is to provide data upon which a

mature system and support elements can be developed and provided in the

following phase. Changes in the logistiCs system and materiel design are most.

cost effective when identified early. As with all testing, the OT I responds

to those issues and qriteria assigned by the evaluator in determining the data

needs and sources. Guidelines for testing in this phase are as follows:

(a) Number of Systems - Since they wil be immature (i.e., oreadboard,

brasaboard, advanced development prototype), quantity is not generally

critical. However, consideration must be given to doctrine and organizational

concepts. For many systems, one or two prototypes will be sufficient, while

others may require 5 to 10 in order to establish interface (e.g.,

oommunications systGUs).

(b) Employment - System should be introduced into assigned unit and

operated' in accordance with preliminary doctrine, organization, mission

profile, and tactical scenario concepts.
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(c) Length of Test - Based on tentative RAM requirements should provide

sufficient iterations to validate mission profile, and failure

definition/scoring criteria and .operation by a sufficient sample of opel ators

and crews (i.e., "as much as possible".

(Cd) Logistic Concept - Preliminary concept should be implemented.

(e) Logistics Support Materiel - Draft manuals, tools and test equipment

should be provided at organizational level of maintenance. As much support

materiel as possible should be provided to address DS support (especially for

critical ES maintenance tasks). GS tasks should be observed for their

complexity and equipment requirements. I'.

(f) Logistics Support Personnel - User personnel of the planned MOS will

be used for operator and organizational maintenance (DS level if possible).

Training will generally be contractor or developer provided.

(g) Readiness to Test Reviews - The OT test agency reviews the SSP

elements, operational test readiness statements (OTRS) and safety release

prior to start of test. When deficiencies are found such that critical issues

(including LOGS issues.) cannot be addressed, decision makers are informed with

recommended course of action.

(h) Obtain from Soldier Support Center, the profile of the qualifications

for MOS test player personnel.

(i) Specific skill requirements should be identified to agencies suppling

data collectors. These skills along with training should provide an

individual who doubles as data collector and on spot logistics evaluator.

(2) OT II. This is normally the final test prior to the full production

decision, therefore, comprehensive testing of the logistics system should be

accomplished. Guidelines are:

(a) Number of Systems - At least three (3). Doctrine ano organization

478

~ .. ***~**~%*~*'** . . - .. . . . -. . . . .* . . ---.



may demand more tor employment pL"poses.

" I(b) Employment - Tactical scenario oriented employirng system in

accordance with approved doctrine, organization and mission profile.

Generally includes force-on-force combat operations.

Cc) Length of Test - Based primarily on RAM and scheduled maintenance

requirements as follows:

-1. A minimum of three test items will each accumulate test time equal to

at least 1.5 times the minimum acceptable value (MAV) for reliability and

operate past the scheduled organizational, DS and OS maintenance points.

2. Total test time will be sufficient for statistl,ial decision risk

levels specified in the IEP.

3. Perform simulated maintenance actions as needed to accomplish 100% of

organizational tasks, 60-75% of DS and 40-60% of GS when combined with tasks
.j

required in test.

*(d) Logistics Concept - Fully defined and implemented through GS level of

*1 supply and maintenance.

Ce() Logistics Support Materiel - All logistics support hardware and
software should be available and utilized.

=*(f) Logistics Support Personnel - All operator',maintenance and supply MOS

•' .personnel selected and trained in accordance with the TRADOC approved training

program.

"(g) Materiel System Characteristics - Prototype of sufficient maturity

"that characteristics that impact logistics represent design to be fielded.

(h) On system and off system replace and repair data will be collected.

Wi) Readiness to Trest Reviews - The OT test agency reviews the SSP

elements, operational test readiness statements (OTRS) and safety release

A4, prior to start of test. When deticiencies are found such that, critical issues
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(including LOGS issues) cannot be addressed, decision makers are informed with

recommended course of action.

(J) Otain from Soldier Support Center, the profile of the qualifications

for MOS test player personnal.

(k) Soeo.ific skill requirements should be identified to agencies suppling

data collectors. These sills along with training should provide an individual

kho doubles a8 data collector and on spot logistics evaluator.

MThese areas should be the sAMe as that planned for initial fielding except

preouliar spure parts actually available may be reduced below stociage levels

as long as developer is in a position to timely resupply to keep test on

schedule. Example, if contractor support at M and OS levels is planned for

first three years fielded, then the test should include DS and OS by

contractor and not the Army standard system. Likewise, if the standard Army

systeM is to be used when first fielded, that is the system to be employed in

the test.

(3) OT I1A, OT IIX 4nd FOE. Theses tests answers those issues and

criteria not addressed or unresolved during and verifies correction of

deficiencies found in OT II. Therefore, the guidelines are the saMe as for OT

II when LOGS critical issues apply.

7. EVALUATION. Once testing is completed and data gthered from other

sources, the evaluation can be completed. Analyses as planned in the IEP

should be conducted. The evaluation should consider each issue for both

positive and negative impacts. OCanges to the logistics and materiel systems

are almost inevitable. Any suggested changes should be thoroughly examined,

since solving one problem often creates another. Conclusions addressing the

480
. 4so. .

i ', 4 4, 4 * *,,* * ,. * * *~.. * 4 * *."



I ~ overall satisfaction with logistics should be stated and viable alternatives
1'IB

should be proposed i•t'ere appropriate. The impacts of any defioiencies or :

proposed changes should be quantified. I
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APPENDIX A

LOGS OT&E DENTRITIC
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1.1.1 Crew/Operator

1.1.2 Organizational
1.1 Organization 1.1.3 Direct Support

1.1.4 General Support

1.1. 5 Depot

.2.1 Maint/Callbration

1.2.2 Repair PartsAllocation of
1.2 Mission 1.2.4 POL

Responsibilities
1.2.4 Ammunition

Resupply

1.2.5 Joint Services
Logi stics Interface

--- /11.0 Support

Concept _2, Transportation

Mission Related
1.3. L Hardware/SoftwareAllocation of Required

3 mission Related Amount of MissionHArdware/Software 1.3.2 Related Hardware/

Software Available

Location of1.3.3 Mission RelatedHardware/Software

1.4.1 Crew/Operator

1.4.2 OrganizationalAllocation of1.4 Supply/Maintenance .4,3 Direct Support
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1.4.4 General Support
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2.1.1 Repair Parts

2.1.2 Tools

I!

2.1. Maint Spt Team

I

Vehicles

.i.

21 Hardware _2.1_ 4 Test & Calibration
Equipment

.I.

"2.1.5 Training Devices
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Field Manuals
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Selection 3.1.2 Training
Requi rements

3.1.3 Aptitude

Logistics
3.0 Support

Personnel

3.2,.1 Comprehensiveness

3.2 Training
Program

3.2.2 Level and type
of Instruction/
"Program of Instruc
tion
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4,._11 Human

Factors

4.1 Design for 4.1.2 Standardization
Logistic Support (Amy)

4, .3 Safety

4.1._4 RSI

4.2.1 Disassembly
of System

_ 4 Materiel/ 4.2. Transportation/ 4.2.2 Transport_//4,0 System Handling
Characteristics Hnln

4.2._ 3 Handle

4.2._. .4 Security

4.3.1 Supply

4.3 Facilities
Requirements 4.3.2 Maintenance

.4,43..3 Storage
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APPENDIX B

LOGISTICS BURDEN ANALYSIS EXAMPLES

1. MANPOJER.

2. PETROLEUM, OIL AND LUBRICANTS (POL).

3. TEST MEASUREMENT AND DIAGNOSTIC EQUIPMENT (ThDE).
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"*4.

MANPOWER ANALYSIS EXAMPLE

Density - 6000 Items

Mission Length - 12 Hours

Combat Usage Rate - 2400 Hrs/Year

Rel MTBF Failure/Years

Rqmt .97 500 4.8

Data .93 175 13.7

Increased burden increases in Failure/Year 8.9

Additional Failures/Ytears - 6000 Items X 8.9 2 53,400 Failures/Year

2 Manhours/Failure X 53,400 Failure/Year : 166,400 Manhours/Year

EQUIVALENT to additional 43 Repairman

i !

Further analysis could be performed to determine the level(s) of maintenance

(i.e., MOS) at which the shortage occurred. Addtionally, this shortfall may

also indicate the need for additional tools, 7hDE and in the case of contract

N team, vehicles.
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POL BURDEN EXAMPLE

- GENERATOR SET XYZ

Data Required for Unit Demand Analysis

"ITEM DESCRIPTION SOURCE

POL CONSUMPTION PER SYS 10 GAL/HR OPERATIONAL TEST

MISSION LENGTH 24 HR/DAY OPN OPERATIONAL

MODE SUMMARY

NO. C• GEN IN UNIT 20 GENERATORS ORGN CONCEPT TSP ELIMENT

"FLEL TANKER CAP 600 GAL TOE AND TANKER

DESCRIPTION

Unit Demand Analysis

10 GAL/HR X 24 HRS/DAY a 240 GAL/DAY/SYSTEM

240 GAL/DAY/SYSTEM X 20 SYSTEMS/INIT i4,800 GAL/DAY/UNIT

4,800 GAL/DAY/UNIT : 600 GAL/TANKER - 8 TANKER LOAfS/DAY/UNIT

Criteria

5 GAL/HR/SYSTEM, 2400 GAL/DAY OR 4 TANKER LOADS/DAY/UNIT

ISSUE CRITERIA NOT MET: ACHIEVIMENT WAS 'WICE THE CRITERIA THUS

SJANALYSIS OF IMPACT ON POL STORAGE FACILITY

IS NEEDED4 9

i• ~493
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I
II

POL BURDEN EXAMPLE (CONT),

Additlional Dat3 Required for storage Faoility m•ot Analysis

ITEM DESCRZPTION SOURCE

TA?1KR TURN AROUND TIME 4 HRS OPERATIONAL TEST

"NO, OF UN7TT SUPPORTED 10 UNITS LOG CONCEPT ELD4ENT OF

TEST SUPPORT PACKAGE

STOREAGE BLADDER CAP 10, 000 GAL TOE & IT04 ESCRIPTION

, TANKER OPERATXONAL 80% FIELD OPERATIONAL

SAVAILABILITY READINESS REPORTS

REQUIRED SUP ON HAND 20 DAY ST0RACF. FACILI.TY STD

M ANPOWER STD-BLADDERS 3 OPERATORS/1O BLADD9RS ITEM DESCRIPTION TOE

TANKER 4 OPERATORS/TRUCK IT104 DESCRIPTION
i".':•' (I.E, E,2 CREWS F0q 24 N~r3)

Supply Faoility Impbot Amal•sis

NUMBER OF' TANKERS:

8 TANKER WADS PER DAY X 10 UNITS SUPPORTED a 80 TANKER LOADS/DAY DEMAND

24 HR/DAY ; 4 HR TURNAROUND TIME/TANKER a 6 TANKER LOADS/TANKER/DAY

80 TANKER LOADS/DAY REQUIRED 1 6 TANKER LOADS/TANKER/DAY a 13 1/3 TANKERS REQUIRED

13,3 TANKERS REQUIRED X 1.2 OPERATIONAL AVAILABILITY FACTOR * 16 TANKERS REQUIRED ,N UNI

(3 ARE DX SUPPLY ITEMS IN UNIT)

NUMBER CF BLADDERS REQUIRED:
4',800 GAL/DAY/UNIT X 10 UNITS 48,000 .AL/DAY/SUPPLED

48, 000 GAL/DAY/SUPPLIED X 20 DAY SUPPLY REQUIRED a 960,000 GAL STORAGE REQUIRED

960,000 GAL STORAGEREQ : 10,000 GAL BLADDER CAPACITY • 96 BLADDERS REQUIRED
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MANPNER REQUIRED:

13 TANKERS OPERATION X 4 OPERATOR/TANKER = 52 TANKER OPERATORS

96 STORAGE BLADDERS : 10 BLADDERS/3 PEOPLE X 3 PEOPLE m 29 BLADDER OPERATORS

TOTAL MANPOWER = 81 PERSONS REQUIRED

Additional Resouroes Required frao Not Having Met Criteria

ACHIEVEMENT WAS TWICE THE CRITERIA, THEREFORE, TWICE AS MANY RESOURCES

"REQUIRED AS WOULD HAVE BEEN IF CRITERIA HAD BEEN MET. THUS ADDITIONAL

RESOURCES ARE:

TANKERS a 8 BLADDERS a 48 MANPOWER . 40

IF THESE RESOURCES ARE NOT ADDED, ONLY 1/2 OF THE TOTAL FLEET WILL BE

'* "1 MAINTAINED COIZTABLE WITH FUEL OR W lILL BE ABLE TO OPERATE 1/2 THE 24 HR DAY.

WHILE OPERATIONAL AVUILABILITY (Ac) DOES NOT INCLUDE MEASUREMENT OF FUEL
iti

AVAILABILITY, THIS LACK OF RESOURCES CARRIES THE SAME IMPACT ON Ao AS

MAINTENANCE REQUIREMENTS. IN EFFECT, THE Ao FOR THIS GENERATOR IS 50% BEFORE

MAINTENANCE BECOMES INVOLVED TO FURTHER DEGRADE Ao * 1/2 THE REQUIRED FUEL

RESERVE WILL BE AVAILABLE.

The Seoondary Logis03os Sytem

ALTHOUGH NOT ANALYZED, IF THE ADDITIONAL RESOURCES ARE ADDED, THEN IT WILL

HAVE THE IMPACT OF DOUBLING MAINTENANCE AND SUPPLY RESOURCES REQUIRED TO

SUPPORT TRUCKS AND BLADDERS FOR POL SUPPLY TO THE GENERATOR.
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TMDE UTILIZATION EXAMPLE

Data Required

ITEM DESCRIPTION SOURCE

NO. CF SYS TO BE SPT/UNIT 200 TOE

NO. OF SYS SPT IN TEST 4 OPERATIONAL TEST

DAILY UTILIZATION TIME (TMDE) 2 HRS/DAY OPERATIONAL TEST

4o FOR SYSTEM .90 OPERATIONAL TEST

Ao FOR TM DF .80 DEVELOPMENTAL &

OPERATIONAL TEST

NO. OF TMDE IN TEST 1 OPERATIONAL TEST

NO. OF TMDE PLANNED FOR UNIT 4 TOE

Utilization Analysis

AVERAGE UTILIZATION PER SYSTEM:

2 HR/DAY : 4 SYSTEMS TESTED 1 /2 HR/DAY/SYSTEM 1i03

200 SYSTEMS IN UNIT X .90 AVAILABILITY FACTOR = 180 SYS OPERATIONAL/DAY/UNIT

180 SYS OPERATIONAL X 1/2 HR/DAY/SYSTE4 = 90 HR/DAY TMDE UTILIZATION
*1"

TMDE REQUIRED:

24 HR/DAY X .80 TMDE AVAILABILITY 19.2 HRS OPERATION AVAILABLE/DAY

90 HR/DAY TMDE UTILIZATION : 19.2 HRS AVAILABLE/DAY -4.7 IMDE ITEMS REQUIRED
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IMPACT OF FIELDING WITH 4 IMDE:

i. WITHOUT COMBAT LOSSES BEING CONSIDERED 4 TMDE CAN SUPPORT:

4 TDE AUTHORIZED X .80 Ao = 3.2 TMDE AVAILABLE

3.2 THDE AVAILABLE X 24 HR/DAY a 76.8 HR OPERATION/DAY

76.8 HRS, OPERATION/DAY ' 1/2 HR TMDE Dk24AND/DAY/SYSTEM u 153.6 SYS

SUPPORTED

. WITH 180 SYSTEMS OPERATION PER DAY, THIS SHOWS A BACK LOG OF SYSTE4S WILL

DEVELOP AT THE TMDE STATIONS AND BUILD UNIT ONLY 154 ARE OPERATIONAL. THUS

DEGRADING OPERATIONAL AVAILABILITY OF THE SYSTEM.

2. CONSIDERING COMBAT LOSSES:

EXPECTED % LOST PER DAY a 20%

THIS IMPLIES THAT AT THE END OF FIRST COMBAT DAY:

180 SYSTEM X .80 = 144 SYSTEMS + 20 IN MAINTENANCE u

164 SYSTEMS IN FLEET FOR SECOND DAY WITH

147 BEING AVAILABLE (164 X .90)

*,• THUS, AFTER THE FIRST DAY OF BATTLE, THE ThDE WILL BE ABLE TO ACCOM4ODATE

THE UNIT SUPPORTED. CONSIDERING THIS, 41 THDE ITEMS MAY BE ADEQUATE.
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THE PERVERSITY OF MISSING POINTS IN THE 24 DESIGN00
Carl T. Russell

US Army Cold Regions Test CenteJ' . A "ý .
:ýA),4.4A Fart Greely, Alaska L,.~/

ABSTRACT. T e author would like better to unders ~nd the i_.act of

missing data onestimability (and variance) flctorials and2.I frac-
tional fact j s. Hoping to find generalizablexresults, the author ex-

0 amlned ther2) design to determine what poin~ie" could be deleted without
losing esti ility of main effects and 2-faetbr interactions (resolution V

# property). He was guided by a result .o.f P.KW. M. John which shows that if a
fraction is missing from a(.2•5design, then estimable effects are those

9 I.,t.imable from half replicates", and the least squarjs s.timates_.a.rrJndbita.lc J.... ---
ocr by averaging the estimates from half replicates.4" In particular, if one or

"two points are missing from the 24 factorial, then the remaining design is
of resolution V, and-the least squares estimates can be written down easily
(without explicitly solving the normal equations). Likewise, there are
essentially six ways a quarter repliLate can be deleted from the 24 design,
"and only two of those leave designs of resolution V. However, If only three
points are deleted, the remaining design is always of resolution V, esti-
mable effects are not necessarily those estimable from half replicates, and
the least squares estimates of effects estimable from half replicates are
not necessarily averages of estimates from half replicates. The only way to
delete four points and fall to have a remaining design of resolution V is to
delete one of the fractions mentioned above. Moreover, there are numerous
ways to delete five points but still retain a design of resolution V. The
author seeks Insight to what is going on w,4th missing points In the 24
factional, hopefully insight which can be generalized to other designs.

"I. INTRODUCTION. Factorial designs are frequently exploited in the
design of field tests of military materiel. I suspect that they can be
,heLter exploited, For example, field tests can be run in blocks consisting
of appropriately chosen fractional factorials to reduce the bias due to con-
founding which is common in much traditional field test design (see Russell,
1981, 1982). Unfortunately, execution of a field test seldom proceeds as
planned, and rather large amounts of missing data are common. I would like
to be able to produce experimental designs which are in some sense robust
against data loss. In particular, I would hate inadvertently to use a
design with nice theoretical properties which could easily be demolished by
missing data.

Hoping to gain a better understanding of the impact of data loss in
factorial designs, I began an empirical study of what I anticipated would be
"a simple case, the 24 design. (The 24 design is also of great practical
interest, since an experiment in four factors each at two levels can be
"conceived and displayed easily but still provides substantial analytical
richness.) The study was limited to considering what points could be de-
leted from the 24 design without losing estimability of main effects and

,p'w
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"2-factor interactions (resolution V property) and to considering the struc-
* .~ ture of the least squares (LS) estimates obtained. In fact, the only non-

"trivial cases considered thoroughly were the cases in which three points
were deleted. Although I was able to obtain some insight in the three-point
cases, that insight was limited and incomplete. Since the four- and five-
point cases appear to be more complicated, this paper deals mostly with the
pathology which results when three points are deleted from the 2 design.

1 /4 II. NOTATION. ANTICIPATED RESULTS AND ACTUAL RESULTS. The full 24

design was conceived as a labelled test point matrix (1PM) in four factors
A, 8, C, and D, where..the presence of a particular lower-case letter in a
cell label indicated that the corresponding factor was at high level in that
cell. The labelled TPM was

(1) c d cd

a ac ad acd

b bc bd bcd

ab abc abd abcd

Potential data to be obtained from this design were modelled as

where the design matrix was
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Ba'

1 1 11 1 1 1 1 1bc

44

1 1 1 1 1 11 1 1 abcd.

and the vector of parameters was
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For convenience, the random vector e was assumed to have an identity matrix
as its dispersion matrix. Deleting po,.nts from the TPM (for example, de-
leting [(1), a) and placing "X" at appropriate positions in the TPM) re-
sulted in deletion of the corresponding rows (for example, x1) and xa) from

the design matrix to obtain a reduced design mAtrix R, and estimability of
all effects1 was determined by checking B j for singularity. When R'R was .
nonsingular, the LS estimate of any specified effect was obtained fom the

appropriate row of (R'i) 1iR and portrayed in terms of the test points by
writing the weights for each remaining test point in the corresponding TPM:
for example, with [(1), a). missing from the TPM, the LS estimate of the A
effect was

X -3 -3 -2

X 3 3 2
32a = &

-3 -2 -2 -1

3 2 2 _1

= -3b+3ab-3c+3ac-2bc+2abc-3d+3ad-2bd+2abd-2cd+2acd-bcd+abcd.

I was guided in this study by a result of P. W. M. John (1971, pages
161-163) which shows that if a fraction is missing a 2n design, then esti-
mable effects are those esitimable from half replicates, and the LS estimates
are obtained by averaging the estimates from half replicates. In particu-
lar, if one or two points are missing from the 24 factorial, then the re-
maining design is of resolution V, and the LS estimates can be written down'
,-xpl 1 ly without bolving the normal equationi. Fur example, [(0), al
detines the 24-2 fraction with defining contrast

I =-B =-C = BC= -= BO = CD = -BCD

so that If ((1), a) is deleted from the TPM, the remaining design contains
the half replicates I = B, I =C, I = -BC, I =D, I = -BD, I =-CD, and
I = BCD. The main effect A is estimable in the four half replicates defined
by two or three factors (since it is aliased with 3- or 4-factor inter-
actions in those half replicates), and its LS estimate is obtained from

.'"

'Henceforth 'effect" wfl1 refer to the mean (I), a main effect (A, B,
C, or D) or a 2-factor interaction (AB, AC, AD, BC, BD, or CD).
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-8Ba 8a 8 0t

X -1 X -1 -1 X -1 -1 X 1 1

- - -" - "I -- - " -I" - I

1 l 1 X 1 1 X i Xl1i
[X

32&= -- + -- + - 4 - -

1 -BC I -BD I -CD I BCD

32a

.X -3 -3 -2

X 3 3 2

-3 -2 -2 -1
•'"3 2 12 1

This computation2 thus provides a structural explanation for the rather
strange looking estimate which pops out of the normal equations.

There are essentially six ways in which a quarter replicate can be
deleted from the 24 design to obtain what is called the three-quarter repli-
cate defined by the defining contrast for the deleted quarter replicate.'
Ihese are characterized by the numbers of 1-, 2-, 3-, and 4-factor inter-
actions in the defining contrasts. Only two yield designs of resolution V:
"one Is represented by any fraction with 1-, 3-, and 4-factor interactions in
its defining contrast, and the other is represented by a design with a
2-factor interaction and two 3-factor interactions in its defining contrast.
The other four designs fail to be resolution V since not all effects are
estimable from half replicates contained in the remaining design.

Any three points in the 24 design are contained in exactly one quarter
replicate, and a design obtained by deleting three points from the 24 design
contains just those half replicates which are contained in the corresponding
three-quarter replicate obtained by deleting the quarter replicate contain-
ing the three points. Since many of those three-quarter replicates are not

"2The notation introduced in this computation will be used repeatedly in
"what follows. LS estimates are written as sums of estimates from appropri-
ate fractions. Each fraction is represented as a TPM having appropriate
weights at all points in the fraction and having blanks or "XPs at all
points not in the fraction. The defining contrast for the fraction is
written below the TPM and the expectation of the estimate is written above
the TPM.

... 0
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of resolution V, I therefore anticipated finding many ways to destroy the
resolution V property by deleting three points from the TPM. This anticipa-
tion turned out to be incorrect. All designs obtained from the 24 design by
deleting three points from the TPM are of resolution V: there are estimable
effects which are not estimable from remaining half replicates. Moreover,
in the two cases where all effects are estimable from half replicates, the
least squares estimates are not averages of estimates from half replicates.

Examination of the various ways four points can be deleted from the 24
design showed that the only way to delete four points from the 24 design and
tail to have a remaining design of resolution V was to delete one of the
quarter replicates for which the remaining three-quarter replicate is not of
resolution V. Moreover, there are numerous ways to delete five points and
still retain a design of resolution V.

III. DESIGNS OBTAINED BY DELETING THREE POINTS FROM THE 2' DESIGN.
There are 550 ways to delete three points from the sixteen points in the TPM
for the 24 design. Since any three points are contained in exactly one
quarter replicate, these 560 ways can be classified into six cases by re-
labelling factors and factor levels so that the quarter replicate containing
the deleted points also contains (1) and (1) is not deleted. These six
cases are described in Table 1.

TABLE 1. Classification of Designs Remaining After Three Points Are Deleted
From the 24 Design.

Case Points Deleted Definina Contrasts* No. Ways Obtained"*

1 a, b, ab I a -C = -D m CD 96

2 a, bc, abc I a -D a BC = -BCD 192

3 a, bcd, abcd I = BC = BD = CD 64

4 ab, ac, bc J = -D = -ABC = ABCD*** 64

"5 ab, cd, abcd I = AB = CD - ABCD 48

6 ab, acd, bcd I a -ABC = -ABO = CD*** 96

RUefinlng contrast for the quarter replicate which contaIns the points

deleted."*Number of ways this design can be obtained by relabelling factors and

factor levels so that the defining contrast contains (1) and (1) is not
deleted. ,
***These two contrasts define three-quarter replicates of resolution V.

The method used for this reduction to six cases (relabelling factors
and factor levels) changes signs and interchanges labels among main effects
and among 2-factor interactions but does not interchange main effects with
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2-factor interactions. A further reduction to three cases can be accom-
plished by introducing four new factor labels W, X, Y, and Z with W A, X =
-AB, Y -AC, and Z = -AD. This induces a relabelling of the TPM

(1) c d cd (1) y z yz

a ac ad acd wxyz wxz wxy wx
from to-r --

b bc bd bcd x xy xz xyz

ab abc abd abcd wyz wz Ly w

and produces a formal correspondence between the six cases in pairs or two
(Table 2).

TABLE 2. Formal Correspondence Between Three-Point Cases in Pairs of Two

Correspondence ABCD Notation WXYZ Notation

Case 1 - Case 3

Case 13
Points Deleted a, b, ab wxyz, x, z
Defining Contrast I= -C = - C I WY1= YZ

Case 2 - Case 5

Case 2 5
Points Deleted a, bc, abc wxyz, xy, wz
Defining Contrast I = -D = BC -BCD 0= WZ = XY WXYZ

Case 4 - Case 6

Case 4 6
Points Deleted ab, ac, bc wyz, wxz, Xy
UWlining Contrast I= -D = -ABC * ABCD I z WZ = -3Y -XYZ

In cases 1 and 3, one effect is estimable from three half replicates, six
are estimable from one half replicate, and four are not estimable from half
replicates. In cases 2 and 5, four effects are estimable from two half
replicates, three are estimable from one half replicate, and four are not
estimable from half replicates. In cases 4 and 6, two effects (one the mean
effect) are estimable from two half replicates and the other nine eftects
are estimable from one half replicate. Because of the formal correspondb~ce
between the two cases in each pair, structure of LS estimates need only be
studied for the first case In each pair (cases 1, 2, and 4): LS estimates
for the other case in each pair (cases 3, 5, and 6) can be obtained simply
by relabelling the weighted TPMs for the first case using the WXYZ notation.
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A. Case 1 and Case Z (Represented by Case 1). For case 1, the three
half replicates contained P i the remaining'design are I = C, I -- D, and
I = -CD. AB is estimable from a'I three half replicates, A and B are esti-
mable only from I = CD, AC and BC are estimable only from I = D, AD and BD
are estimable only from I = C, and I, C, D, and CD are not estimable from
half replicates. The LS estimates of effects estimable from half replicates
are the estimates from half replicates or their average (in the case of AB).

24a 24 Y 24y6

3

X 3 3 X -3 3 X -3 3
24^ : . - 24a" - - 246 1-

' -3-3 X 3-3 3 3

,, X 3 3 X -3 3 X -3 3
,,-I

240 2 B 240

""3 "3 3 -3 3 "3

3 3 3 X 3 -3 X 3 -3
24# = 24 = -- 24A =-,

X -3 -3 X -3 3 X -3 3

X 3 3 -3 3 X-3 3
'.,,

I DI

11 1 2 2 2

X 1-i 1 X -1"i -I -1 X -- 2 -2
24•:p + a- - aI-1 1X -1 X -2 -1X" 2 -2 "'

x-- K -1 -1 x -1 -1 - 22

x 1 1 1 X1 1 X 2 2 2

I D

Although the effects C, 0, and CD are not estimable from half replicates,
each is estimable from a quarter replicate which is contained in the remain-
in design and contains (1); such quarter replicates will be referred to as
1 -Quarter replicates, The (1)-quarter replicates from which C, D, and CDare estimable are e following.
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Effect Defining Contrast Points in
Estimable for (1)-Quarter Replicate (1) Quarter Replicate

CD I = -A = -B = AB (1), c, d, cd
"" C I = AB =AD = BD (1), c, abd, abcd

D I = AB = AC = BC (1), d, abc, abcd

Inconveniently, the estimates obtained from these (1)-quarter replicates are
not the LS (minimum variance) estimates. Instead, the LS estimate of any
effect not estimable form a half replicate can be obtained by estimating it
nin a (1)-quarter replicate where it is aliased with OAB (the eftect ebti-

mated with smallest variance among those effects estimable form half repli-
cates) then correcting for the bias using the least square estimates of the
-effects from half replicates. For example, C Is aliased with -AB in four
(1)-quarter replicates.

Points In Defining Contrast for Alias Chain
(1)-Quarter Replicate -q ater Replicate Containing C

0( , o,ac, acd IAC -ABC C+ A-AB- BC
,.(1), d, bc, bcd 1 A BC. -ABC C+B AB AC
(1), ac, abd, bcd I = BD -ACD a -ABC C - AB - AD + BCD
(1), bc, abd, acd I = AD -BCD = -ABC C - AB - B6 + ACD

Since 3-factor interactions are assumed to be zero, the four (identicall)
"estimates are as follows.

240 .+u-4-0 -24a 240 24

&i
- 6 3 3 2 2 2 3 -3

K 61 6 X -3 -3 X -2 -2-2 X 3 -3
24j= - - + - + - - a + - -

-"X X 3 3 X "2 -2 .2 X -3 3
SX -3 -3 2 2 2 X -3 3

24( -Ofla - -4a-- 24 Y

-6 -6 3 3 2 22 3 -3

X X 3 3 X -2 -2 -2 X -3 3r- - - - + " a + + - -

X 5 6 X -3-3 X 2 -2 -2 3 3-3

SKX-3 -3 X 222 X -33

I.i
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- 24cij 2 2 244A

-6 2 2 2 3 -3

X 6 X -2 -2 -2 X -3 3

X 6 X -2 -2 -2 X 3 -3

X -6 X 2 22 X -3 3

24-- ) 24a 24

-6 2 2 2 3 -3

X 6 X -2 -2 -2 X 3 -3
X - + - - 2 - + 1-
X 6 X 2 -2 -2 X -3 3
X -6X 2 2 2 X -33

:• 24v

-6 5 2-1

X 1 -2 1

•X 1 -2 1

)X -1 -4 5

4 The very strange looking LS estimate for the effect of C which comes from
solving the normal equations can therefore be explained in this case by areasonable rule. The same rule works for D and CD as well as I (which is
not even estimable from a (1)-quarter replicate). For example,

24 24• O -j -2 24ay 248

-6 2 2 2 3 -3 -6 2 5 -1

248_ X 6 X -2 1-2 2 X -3 3 X -2 1 1
X 6 X -2 -2 3 -3 X "2 3.1

X -6 2 2 2 X -3 3 X-4-1 5

I,*

5i
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24(y6-*+"a - 24a* - -240 24y -

6 6331-21- -2 1 6 -5 -5 4
- - - -3 -3I -2- --

24= -61-61 1 331 X 212 2 X -1 -1 2
x X -3 -3 X 2 22 X -1-1 2

)( 3 3 ---

240+0)- -248 - 24j

6 6 -2 -2 -2 6 -2 -2 4

24 -

K X 2 2.2 X( 22 2

Tevariances of these LS estimates are as follows.

TeEffect Etmated VariancofLSstimat

A: B:ACI C, As BD3/24 = 0.12
AB 2.24 = 0.08

B. as 2 ndCase 5 ýRepresented by Case 2. For case 2, the three
half relctscontained in hne remaining dfe-sign are I=D, I=-BC, and
I aBCD. A and AD are estimable from both 7 -BC and I = BCDO AB and AC
are estimable from both I = D and I =BCD; 8C, D, and I are each estimable
from only one half re licate, and B, C, 80, and CO are not estimable from
half relcts s case 1, the LSestimate of an effect estimable from
half rpiaeisteaegeof teestimates from half replicates.

22- 22-2
- - 21 - -2 - - 2 -2

16 -16^--- 16fi
26 X 2 2 -2X 2 -A 2-22

2 K -2 2 -2 2
2K 2 - K 2 -2 2
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.8a 8_ a 16a

-"-1 -1 -1 -2 -1 -1- - - - - - - -
X 1 1 X 1 1 X 2 1 1.. ,.166 + = ,

"1 X -1 -1 X -1 -2 X -1 -1

1 ix 1 2x 11

806 806 16A8

,-1 1.Ja x -1 1a - -2 a -
1 -1 1 -1 2 -1 -1

X -1 1 X-1 1 X-2 1 1

-- + -- 11

1 X -1 1 X -1 2 X -1 -1 • -

-1X 1 "1X 12X 11

- aL _ e .... - 16a. -

1 11-- 1 1 1 2 1

x -1 -1 X. -1 -1 X-1 -2 -1
16-i -+ -----------

-1 X -1 x -1 -1 -1 X -1 -2

1X 1 X 11 1Xi 2 p.

8Sa 8 - - 16a 1 v
-1 2-1

x 1 "1 -1 "1 X1 -2 1
166*r= - - - + - - - - - - - -

1 X -1 X 1 -1 i X 1 -2

.1 A"1" 1 "1 X -1 2
E 11 1

In a similar manner to that of case 1, the LS estimates of B, C, B0, and CD
can be obtained by estimating each from a (1)-quarter replicate where it is

54,
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aliased with effects estimable from more than one half replicate, then
correcting for bias. However, the (1)-quarter replicate used must alias the
0: ItvcL ul intere~bL with two effects estimable from two halt replicates.
there are four such (1)-quarTer replicates for each of B, C, BD, and CD, and
for each of these effects, all four (1)-quarter replicates yield the same
estimate. Just one of the (1)-quarter replicates in each set aliases the
effect with a higher-order interaction (in this case, the 3-factor inter-
action ±BCD), and the resulting LS estimates are as follows.

16 Y 16a0 16

•--4 "i 2 -1 2 -1 -1 -4 1 1 -2

X -4 X 1 -2 1 X -2 1 1 X -1 -1 -2

x 4 1 K 1 -2 2K-1 -1 3 K 0

4 X -1 X2 1 1 X 0 3

161, _- '__6 1af 16u6 16Y
.4 1 2 1 2-1 -1 -4 3 1 0

"X 4 X -1 -2 -1 X -2 x X 1 1 0'";167 . + . . .

K 4 .3 x11-2 t-2 X 1-11 1 x-211

.X -4 1 X " 2 2 X 1 1 E X.2 3

'I16(06-cy+OY 16ot -1 1606 _

4-2 -4 -1 1 -2 1 -1 0-3
- - -s - -1 2 -1 -1

*.,

X K -42 K 1 K- - 1
16F6="I-,

X 4 -2 X -1 -1 -1 X -1 2 -3 X 2 1

2. 4 1 1 1 1-2 -1 t 2 -1

4_-i
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6- L16a -16§ 16Y6 _

4 4 -2 -1 -1 1 -2 -1 4 -1 -3 2

K -4 -4 X 2 1 1 X -1 2 1 X -3 -1 2

X -2 X -1 -1 1 X i 2 -I X 0 1

X 2 X 1 1 -1 X -1-2 1 X 0-"

The variances of these LS est'mates are as follows.

Effect Estimated Variance of LS Estimate

B, C, BO, CD 6/32 = 0.19
"I, 0, BC 4/32 = 0.12
A, AB, AC, AD 3.32 = 0.09

"In both case 1 and case 2 (therefore also case 3 and case 5), the
"scheme given for obtaining the LS estimates of effects not estimable from
"half replicates uses a (1)-quarter replicate and estimates from all three
half replicates contained in the remaining design. However, using a (I)-
quarter replicate and estimates from all three half replicates contained in
the remaining design is not enough. This and nore can be seen by con-
sidering all estimates for effect C in case 2 which are obtained by esti-
mating C in a (1)-quarter replicate, then correcting for bias. For case 2
(actually for cases 1-6) there are sixteen (1)-quarter replicates in all.
In case 2, four of the (1)-quarter replicates yield the LS estimate of C.
These are: I = BD =-ABC=-ACD, I=-A-CD=-ACD, I= -A=-C= AC, and
I = -A = -B = AB. The remaining twelve (1)-quarter replicates yield a total
of eight different estimates of C having two different variances. These
estimates are listed below together with the (1)-quarter replicate user!
(beneath the TPM) and the alias chain for C in that (1)-quarter replicate
(Ahove the TPM).

C-AD-BD+ABC C-AB+D-ABCD

-4 21 1 -4 3 2-1

X 21-1 -1 X 1-2 1
2 X 1-3 1 1 X -3 2

-2 X -1 3 -1 K -1 2
,2~ -=-T 5=.2
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C-AC-BC+ABC C-AB-I+ABC C-AD"-I+ACD C+A+D+ACD

-4 3 1 -4 3 1 -4 4 1 -1 -4 14 1 -11

X 1 -1 X 1 --1 K -1 -1 1

-..4 1 X-i 1 X -1 X-1 1 x -i 1

-1 "-3 4 1 -3 3 X -3 3

C-AC+BCD-ABCD C+A+BCD+ABD

-4 3 2 -1 -4 2 11

X 1 -2 1 X 2 -1 -1

1 K x-3 2 2 X -3 1

-1 x -1 2 -2 X -1 3

C-BC+ACD-ABCD C+D+ABC+ABD C-I+ABD-ABCD

-4 4 2-2 -4 1 2 2 -4 2 2
" 22 K 2 -2 X 2 -2

X -2 2 2 X -2 2 X -4 2

X -2 2 -2 X -2 4 -2 X 2

=IABIUD I=- =AF

C+ABC#4ACD+BCD

-4 4

X -4 4

Each estimate in the first row estimates C in a (1)-quarter replicate where
it is aliased with an effect from two half replicates and a second effect
estimated from the remaining half replicate, but neither is the LS estimate
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(each has variance 7/32 = 0.22); thus merely involving all three half repli-
cates in the estimation of C is not enough. Each estimate in the second row
estimates C In a (1)-quarter replicate where is is aliased with both an
effect estimated from two half replicates and a second effect estimated from
one of those same half replicates; this row contains two copies each of two
different estimates. Each estimate in the third row estimates C in a (1)-
quarter replicate where it is aliased only with a single effect estimable
from two half replicates; each estimate in the third row is the same as one
of the estimates in the first row. All estimates in the first three rows
have the same variance, 7/32 = 0.22). Each of the four different estimates
in the last two rows has variance 8/32 = 0.25. Each of the three estimates
In the fourth row estimates C in a (1)-quarter replicate where it is aliased
only with a single effect estimable from one half replicate, and the esti-
mate in the last row estimates C in the (1)-quarter replicate where it is-: ~estimable. '

C. Case 4 and Case 6 .Represented by Case 4). For case 4, the three
half replicates contained in the remaining design are I = 0, I ABC, and
I= z ABCD. D and I are estimable from I = ABC and 1 -ABCD. A, B, and C
are estimable from I = -ABCD; AC, BC, and AB are estimable from I = 0; and
AD, B0, and CD are estimable from I = ABC. Thus all effects are estimable
from half replicates. However, none of the estimates obtained by averaging
estimates from half replicates is the LS estimate. The LS estimate of 0 can
be obtained by estimating D in the (1)-quarter replicate where it is esti-
mable and forming a strangely weighted average with the estimates from the
two half replicates where 0 is estimable.

-- 86 246 -246 566 --

.2 2 -3 3 -3 3 -2 -6 5 3

5 x= -3 X 3 -3"X 3 -6 X 33

-= ,-- 4. n =-A -~ - =Ae-c - = --X -3 X 3 -3 X 3 -6 K 3 3

X -2 2T X -3 3 X 3 ....3 X -8 3 5

PA3 B I=. B~CD VN

On the other hand, I is not estimable from any (1)-quarter replicate; I can
be estimated by estimating I in any of the three (1)-quarter replicatei
where it is aliased with onc of the three effects estimable only from I = 0,
correcting for the bias, and forming a strangely weighted average with the
estimates from the two half replicates where I is estimable. For example,
if the (1)-quarter replicate I = AB = -ACO = -BCO is used, the LS estimate
can be obtained as follows.

5

514

. . .. . . . . .... . . . . .. . .... ... .•

. . . . .. . . . . . . . . . . . . . . . . .



8~a2 Ij4 241

2 2 -1-1 3 3 3 3

x X 1 1 3 X 3 3 X 3
+56 •-- + +

X X 1 1 3 X 3 3 X 3

2 2 -1 -1 X 3 3 X 3 3

-56w-

2 6 2 4

6 X 4 4

6 X 4 4

K 8 4 2

A, B, C, AD, BD, and CD are each estimable from a (1)-quarter replicate
contained in the design, and each can be estimated by forming, a strangely
weighted average of the estimate from that (1)-quarter replicate, the esti-
mate from a half replicate, and an estimate of zero (the estimate of
-ABC-ABCD from I D). Those LS estimates follow.

160 40a 0 56a

"-4 -5 -5 1 -1 -4 -5 -4 -1

4 X 5 X 5 X -1 1 9 X -1 6
56S .. + =

X "4 -5 X -5 X -1 1 -5 X -1 -8

S4 X 5 5 1 1i-1 K 5]6 3
I== ....

16 4011 0 56

"-4 -5 -5 1 -1 -4 -5 -4 -1
-4 -5 X -5 X -1 1 -5 X -1 -8

56F = 4 -,, + - = --
4 x 5 5 X -i 1 9K-i 6

X 4 X 5. 5 1 -11 X 563

,IL
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16 40 0 56

-4 4 5 -5 1 -1 -4 9 -4 -1

X -5 X 5 X -1 1 -5 X -1 656J' +=--

x -5 X 5 X - 1 -5 X -1 6

X -44 X 5-5 X 1-1 X 5 8 3

16a6 40a6 0 5608 _

4 4-i4 5 -5 1 -1 4 5 -3 -6

-4 X 4 -5 X1 5 X -1 1 -9 X 8 1
56A - I - + + - +

X 5 X -5 X -1 1 5 X -6 1

S-5 5 X 1-1 X -5 1 4

16 40 6 , 0 i566

4 -4 5 -5 1 -1 4 5 -3 -6

x X 5 x-5 x 11 5 X -6 1+ =6 = *
-4 X 4 -5 X 5 X -1 1 -9 X 8 1

-- - -5 - -
,)X X -5 5 X 1 -1 X -5 1 4

16Y 406 0 56Y 6 .

4 -4 -4 4 -5 5 1 -1 4 -9 -3 8

x 5 X-5 x-1 1 5 x-6 1
56 . .= + .. .. . - _ ,

x 5 X-5 X -1 1 5 X-6 1ik

x X -5 5 x 1 -1 X 5 4 4

- - - - -

* Finally, none of AB, AC, and AD is estimable from a (1)-quarter replicate,
but each can be estimated by forming a strangely weighted average of the
estimate from I D (where each is estimable), an estimate from I = ABC
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"(where each is aliased with a main effect estimable from a (1)-quarter
replicate), and an estimate from I = -ABCD (where each is allased with a
2-factor interaction estimable from a (1)-quarter replicate)i then correct-
ing for bias using estimates from appropriate (1)-quarter replicates. The

"'* LS estimates follow.

... , p~i..-- 8....
5 5 1 1 2 -2

X -5 -5 -1 X -1 X
56•= + +

X -5 -5 -1 X "1 X

K 55 1l 1 2-62

T= t -y6 a 65

1 1 2-2 -2 2 4 -2 4 8
-1 X -1 K -2 X -6 -6

~ .9-- - - -6

-1 X -1 X -2 X -6 -6

X l1 K 218 4

I=- BCDa -

._ 40ay - )- 8

5 -5 -1 -1 2

K -5 5 -1 x -1~ x 21

X 5-5 1 X 1 -2 X
K,!} x -5 5 x 1 1 -2t

- ___ 56co....6 .

-1.1 2 -2 4 -2 4 -6

-1 X 1 x -2 X -6 8

1K' -1 -2 , 2 -2 - 8 -6

K 1 -1 K K 2-6

WM- Ia - -
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- 400 ... - -

5 -5 - - 2 i

X 5 -5 1 X 1 -2 X
560y= + +

X -5 5 -1 X -1 X 2

X -55 X l 1 X -2

S856 3y

S1 1 2 -2 4-2 4"6

+ X -i -2 X 2 -2 X 8-6

1iX I X -2 X -6 8

x i x X 2 6 4

Of course, all these LS estimates improved on the LS estimates which
could be obtained if the entire quarter replicate I = -O = -ABC = ABCD were
deleted to obtain a three-quarter replicate. For D and I the variance of
the LS estimate decreased from 3/32 a 0.094 to 5/56 z 0.089, and for each of
the other effects the variance of the LS estimate decreased from 1/8 = 0,125
to 3/28 = 0.107. Unfortunately, the structural decompositions of LS esti-
mates obtained In case 4 were not nearly so appealing as those obtained for
cases 1 and 2. They bore little resemblance to the decompositions in cases
1 and 2, the ad hoc weights needed for the averages had no obvious justifi-
cation, and the estimates of zero needed for six of the estimates were
counter to intuition. Possibly there are some other decompositions for case
4 which resemble more closely the decompositions for cases 1 and 2, or
possibly there is some unifying principle which has been missed.

IV. DESIGNS OBTAINED BY DELETING FOUR POINTS FROM THE 24 DESIGN. Four
points can be deleted from the 2% design by deleting a quarter replicate or
by deleting a set of four points which do not form a quarter replicate. As
discussed in Section II, there are essentially six ways to delete a quarter
replicate, and four of those leave a design which is not of resolution V.
The sledgehammer approach was used to examine the ways that a set of four
points which do not form a quarter replicate can be deleted: appropriate
points different from (i) were deleted one at a time from the six cases in
Table 1, and the resulting matrix B'B was checked for singularity. None of
the exhaustive list of designs checked (Table 3) yielded a singular matrix
R'P, which shows that the only way to delete four points from the 24 design
and fail to have a resulting design of resolution V is to consider one of
the three-quarter replicates which is iot of resolution V. An attempt was
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TABLE 3.--Designs Derived by Deleting an Additional Paint Other That (1)
From the Designs in Table 1 (All Are of Resolution V)

Additional Additional
Basic Point Basic Point

Case Points Deleted Deleted Case Points Deleted Deleted

1-1 a, b, ab c 4-1 ab, ac, bc a
1-2 ac 4-2 d
1-3 rj 4-3 ad
]-4 ih,- 4-4 abc
1-b FA 4-5 abd
1-6 ."bcd 4-6 abcd

2-1 a, bc, abc b 5-1 ab, cd, abcd a
2-2 d 5-2 ac
2-3 ab 5-3 abc
2-4 ad

2-5 bd
2-6 abd
2-7 bcd
2-8 abcd

3-1 a, bcd, abcd b 6-1 ab, abc, bcd a
3-2 ab 6-2 c
3-3 bc 6-3 ac
3-4 abc 6-4 cd

6-5 abc
6-6 abcd

made to describe for a few of these designs the structure of the LS esti-
mates obtained, but the attempt was discontinued without success when it
appeared as anticipated that the LS estimates from these designs were even
moro obstinate than the three-point cases considered in detail. Table 4
gives the variances of the LS estimates for each case in Table 3; these were
obtained as the diagonal entries of (%'B)-l. Reclassification of the cases
in Table 4 by numbers of estimates having particular variances might lead to
a considerable reduction in cases for detailed study, but I have not yet had
time to attempt such a reduction.

V. DESIGNS OBTAINED BY DELETING FIVE POINTS FROM THE 24 DESIGN. Only
a few designs obtained by deleting five points from the 24 design were
examined. First, the sledgehammer approach was continued for designs de-
rived from three-point case 1. Appropriate points different from (1) were
deleted one at a time from cases 1-1 through 1-6 in Table 3 (obviously
redundant subcases were excluded from consideration), and the resulting
maLtrIx 'R wab checked for singularity. Most of the resulting designs were
of reso ution V, and none of the resolution V designs contained a quarter
replicate withinthe points deleted. All six designs which failed to be of
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TABLE 4.--Variances of the LS Estimates for Each Design in Table 3

Effect Estimated
Case I A AB C AC BC D AD BD CD

1-1 1/4 7/32 7/32 1/8 15/32 1/8 1/8 1/4 7/32 7/32 15/32
1-2 1/4 7/32 7/32 1/8 7/32 1/8 1/8 1/4 7/32 7/32 7/32
1-3 3/8 1/8 1/8 1/8 7/32 7/32 7/32 7/32 7/32 7/32 3/8
1-4 3/8 7/32 7/32 1/8 7/32 1/8 1/8 3/8 7/32 7/32 7/32
1-5 1/4 1/8 1/8 1/8 7/32 7/32 7/32 7/32 7/32 7/32 1/4
1-6 1/4 1/8 1/8 1/8 15/32 7/32 7/32 15/32 7/32 7/32 1/4
2-1 1/4 7/32 15/32 1/8 7/32 1/8 1/8 1/4 7/32 15/32 7/32

2-2 1/4 1/8 7/32 7/32 7/32 7/32 1/4 1/8 1/8 15/32 15/32
2-3 1/4 7/32 7/32 1/8 7/32 1/8 1/8 1/4 7/32 7/32 7/32
2-4 1/4 1/8 7/32 7/32 7/32 7/32 1/4 1/8 1/8 7/32 7/32
2-5 1/8 7/64 3/16 7/64 1/4 7/64 3/16 3/16 7/64 1/4 3/16
2-6 1/8 7/64 3/16 7/64 1/4 7/64 3/16 3/16 7/64 1/4 3/16
2-7 1/4 1/8 7/32 7/32 7/32 7/32 1/4 1/8 1/8 7/32 7/32
2-8 1/4 1/8 15/32 7/32 15/32 7/32 1/4 1/8 1/8 7/32 7/32

3-1 1/4 1/8 1/8 1/8 7/32 7/32 15/32 7/32 7/32 15/32 1/4
3-2 1/4 1/8 1/8 1/8 7/32 7/32 7/32 7/32 7/32 .7/32 1/4
3-3 3/8 1/8 7/32 7/32 7/32 7/32 3/8 1/8 1/8 7/32 7/32
3-4 1/4 1/8 7/32 7/32 7/32 7/32 1/4 1/8 1/8 7/32 7/32

S 4-1 1/4 15/32 7/32 1/8 7/32 1/8 1/8 1/4 15/32 7/32 7/32
4-2 3/32 1/8 1/8 1/8 1/8 1/8 1/8 15/128 15/128 15/128 15/128
4-3 1/8 7/64 7/64 3/16 7/64 3/16 1/4 7/64 1/4 3/16 3/16
4-4 3/8 7/32 7/32 1/8 7/32 1/8 1/8 3/8 7/32 7/32 7/32
4-5 1/8 3/16 3/16 1/4 1/4 3/16 3/16 7/64 7/64 7/64 7/64
4-6 3/32 15/120 15/128 1/8 15/128 1/8 1/8 15/128 1/8 1/8 1/8

5-1 1/4 1/8 1/8 1/8 7/32 15/32 7/32 7/32 15/32 7/32 1/4
5-2 1/8 7/64 7/64 3/16 7/64 1/4 3/16 7/64 3/16 1/4 3/16
5-3 1/4 7/32 7/32 1/4 1/8 7/32 7/32 1/8 7/32 7/32 1/8

6-1 1/4 1/8 1/8 1/8 7/32 15/32 7/32 7/32 15/32 7/32 1/4
6-2 3/32 1/8 1/8 1/8 15/128 15/128 15/128 1/8 1/8 1/8 15/128
6-3 1/8 3/8 1/4 3/8 3/8 1/4 3/8 7/64 7/64 7/64 7/64
6-4 3/8 1/8 1/8 1/8 7/32 7/32 7/32 7/32 7/32 7/32 3/8
6-5 1/8 3/8 3/8 1/4 7/64 7/64 7/64 1/4 3/16 3/16 7/64
6-6 1/4 1/8 1/8 1/8 15/32 7/32 7/32 15/32 7/32 7/32 1/4

5.2
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resolution V contained a quarter replicate within the points deleted: for
four of these designs the deleted quarter replicate defined one of the
three-quarter replicates not of resolutior V (that is, the defining contrast
for the deleted quarter replicate corresponded to one of cases 1, 2, 3, or 5
in Table 1); however, for two of these designs the deleted quarter replicate
defined o three-quarter replicate of resolution V (corresponding to cases 4
or 6 in Table 1). Table 5 lists the designs checked and gives for all
designs which were not of resolution V the defining contrast for the quarter
replicate contained within the points deleted as well as the corresponding
case number from Table 1.

TABLE 5.--Designs Derived by Deleting an Additional Point Other Than (1)
i Fro'm Cases 1-1 Through 1-6 in Table 3

Add i L Ulia I Detining Contrast for Corresponding_••Point Quarter Replicate Contained Case Number

Case Deleted Resolution V Within Points Deleted From Table 1

1-1-1 d yes
1-1-2 ac no I = -D = -BC= BCD Case 2
1-1-3 ad yes
1-1-4 cd yes
1-1-5 abc no I = -D = ABC -ABCD Case 4
1-1-6 abd yes
1-1-7 acd yes
1-1-8 abcd yes

1-2-1 ad yes I'.
1-2-2 cd yes
1-2-3 abc: no I = A= -D AD Case 1
1-2-4 abd yes
1-2-5 acd yes
1-2-6 abcd yes

1-3-1 abc yes
1-3-2 acd no I = -BC -BD CD Case 3
1-3-3 abcd no I = CD = ABC ADD Case 6
1-4-1 abd yes
1-4-2 acd yes
1-4-3 abco yes

1-5-1 abcd no I= A =CD =ACD Case 2

Based on the results for designs derived from case 1 twelve final
designs were checked. These were the designs resulting when (1) was deleted
from cases 4-1 through 4-6 and 6-1 through 6-6 in Table 3. These final
checks were equivalent to examining both the resolution V three-quarter
replicate defined by I = -D = -ABC = ABCD (case 4 in Table 1) and the reso-
lution V three-quarter replicate defined by I CD = -ABC = -ABD (case 6 in
Table 1) to determine the result of deleting each remaining point one at
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a time. The TPM for each of these three-quarter replicates is given below
with points in the defininq quarter replicate labelled by "XP and each
remaining point labelled by 1'+ (if deleting that point yields a resolution
"V design) or "-" (if deleting that point fails to yield a resolution V
design).

Sx -. + + A + + -

X- + + - + + +

X + + - + + X

X - + + + + + -
II

In each case, the designs which fall to be of resolution V are those where
all five points are contained in a half replicate defined by a main effect
or a 2-factor interaction.

From the cases studied, a promising conjecture for designs resulting
when five points are deleted from the 24 design in that any such design is
of resolution V if either of the following holds:

_. I) The points deleted contain no quarter replicate.

"ii) The points deleted contain a quarter replicate having exactly one
main effect or exactly one 2-factor interaction (but not both) in Its
defining contrast and not .all five points deleted are contained in any
half replicate defined by a main effect or a 2-factor interaction.

Unfortunately, I have neither been able to prove this conjecture algebra-
ically nor had the'time to apply the sledgehammer approach to designs
derived from cases 2, 3, and 5 in Table 1.

VI. SUMMARY AND QUESTIONS. In this paper, laborious computational
methods have been used to investigate the designs resulting when less than
six points are deleted from the 24 design. Clearly, deleting six or more
points from the 24 design leaves a remaining design which is not of resolu-
tion V. I had anticipated that there would be many ways to delete as few as
three pointa from the 24 design and fail to have a remaining design of
resolution V, Instead, this paper showed that there is no way to delete
three points from the 24 design and fail to have a design of resolution V.
Furthermore, there are many ways to delete four or five points from the 24
design and retain a remaining design of resolution V. I conjecture that
most designs obtained be deleting four or five points at random from the 24
d(,,•.igIn are nf re:,olution V, but I have not yot attempted the cofnblvitoric,
involved.) In the cases where the least squares estimates were studied in
detail, however, the least squares estimates obstinately resisted unified
structural representation.

Z'!
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Like many Army statisticians, I am somewhat isolated from the statisti-
cal community: there are few convenient persons with whom I can discuss
statistical problems, and I lack ready access to an extensive statistical
library. Fortunately, this Conference provides an opportunity in the form
of Clinical Papers for statisticians like myself to present incompletely
solved statistical problems for expert discussion.

I would like better to understand the impact of missing data on esti-
nmability and variance in 2 n factorials and 2 nk fractional factorials. In

(lhe (;%•(xLt of 015 h pl•per I lave ive questiunb:

1. Are there blunders in this paper which invalidate some or all of
the results?

* J. 2. Are there known results which encompass some or all of the results
of this paper?

3. Are there (hopefully generalizable) methods which might yield the
results of this paper more easily?

4. Have I overlooked some unifying principle which ties together the
results of this paper?

5. Are the structural decompositions of least squares estimates
attempted for the three-point cases in this paper

i) the wrong ones, in the sense that other more usable
versions exist?

HI) i.,m I v, I n Lhu tuitu LthdL ue bitiuu Id. nut hupe tu ex-
plain simply the solution of the normal equations
for fairly arbitrary designs?
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BAYESIAN RELIABILITY ESTIMATES
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ABSTRACT

in decision theoretic approaches to estimation problems, lose functions

of the type L(S,8Y * 10-6 ilm Q > 0 are often employedl'often Q - 2. In

many applications of reliability and life testing, such loss functions are

inappropriate. Alternative Loss functions which appear to be move suited to

the intended application are proposed and Bayemian estimates of the

exponential parameter are obtained for these.

Asymptotic expansions of such estimators are given and compared with

estimators given in the literature.

.1.
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SENSITIVITY AND ASYMPTOTIC PROPFRTIES OF

BAYESIAN RELIABILITY ESTIMATES

.'..'.

"Bernard Harris

Andrew P. Soms

SI.1. INTRODUCTION

In decision theoretic approaches to estimation problems, the error of

estimation is typically measured by loss functions of the form

-L(e, - I- I v 0 0

where e is the unknown parameter and § is the corresponding estimator.

However, as the following heuristic argument will demonstrate, such a loss

function is oten inappropriate for many applications of reliability and life

testing.

Let R, 0 t R < 1, be the reliability of some device. If is'an .

estimator of R and the true value of R is .5, then an error of the magnitude

Ia-RI a .1 would be unlikely to affect any administrative decision concerning

the feasibility of the device, since a device whose reliability is between .4

and .6 would not usually be regarded as satisfactory. On the other hind, if
A

R - .90, then one device in ten fails and the estimate R - .99 would suggest I..

-=" that only one device in 100) would fail. Thus, one might be inclined to conclude5-, '.5-

"~.: that one-tenth as many replacements were needed as were in fact required and

consequently seriously misjudge maintenance and replacement costs. A similar

but opposite error in Judgement occurs when R - .99 and R a .90. Consequently,

it appears to be desirable to concentrate on errors of estimation for R close

to unity

-) Sponsored by the United States Army tinder Contract No. DAAG29-80-C-
0041 and the Office of Naval Research under Contract wo. N00014-79-C-0321.
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Considerations such as those described above suggest that loss functto,,i

su:itable for reliability applications might have 'oms such as

.1
-;Lt(R,A•) =R-A(•v/(1-R)'c, 0O:R<I1, 0 R<1I, •>0, •>O,

or

L(R•R") 0 :rl A < I, v,>.

In order to study the effects of using such loss functions, we consider

a Bayesian model for exponential life testing and examine the asymptotic behavior

of the estimates thus obtained.

Specifically let X1 ,X2 ,...,Xh be independent identically distributed

-i observations from an exponential distribution with probability density function

"--4 f%,x;e) - 0-= x > 0, e > 0. )

Then the reliability T i- defined as

-'T (2)
RTe

where T > 0 is a constant assigned in advance of tho experiment and known as

the mission time. With no loss of gener3lity, we can set T - 1, since this

corresponds to selecting the scale with respect to which the observations

XI ,X2 1...,XN are measured.

In Section 2, we obtain Bayesian estimators for specific loss functions

of the type described previously, when R has a beta distribution prio,,. We

compare this with the Bayesian estimator of R that is obtained by assigning

"a gamma prior to e, a choice of Bayesian model quite often found in the

literature. Obviously, since R Is a function of e, this induces a prior
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on R; however, the priors assigned to e in such studies do not induce the

beta family of priors or, R.

"In Section 3, the asymptotic behavior of these estimators is given. These

asymptotic expressions facilitate studying the sensitivity of the estimators to

the ct-Anges in the loss functions.

Section 4 lb devoted to comparing the results obtained herein with previous

estimation techniques.

Several appendices which provide the technical details needed to establish

the existence of the estimators and the calculation of the asymptotic expansions

are included at the end of the paper.
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2. BAYESIAN ESTIMATION FOR UNCENSORED AND TYPE II CENSORED DATA

Let X(S) X X be the order statistics from a random

sample disbributed by (1). Assume that only the first n order statistics

have been observed, 1 5 n s N. Then, it is well-known that the total time

on test statistic Y, defined by

nI .1
yi a f(e) + (N-n)X(n) (3)

is a sufficient statistic and its probability density function is

f fy(Y;O) _ en e-ey ynlrMnn), y > O, a > 0. (4)

To represent (4) in terms of the reliability R, we reparametrize,

* obtaining

fy(y;R) - (-log R)n Ry yn'llr(n), 0 < R < I, y > 0, (5)

Let

-larR- 1 -R)', 0 < R < 1, > O , (> 0 6)

be the prior distribution on R. Then the joint distribution of R end Y

is given by

f(y,R;a,) " r(lrWn)+ R+y- (I.-R) 1- (-log R)n yn-I, (7)

O< R < I, O<y, o> 0, $ > 0, 1 1n :N.

We now obtain the marginal distribution of Y. Expanding (l-R)0"' in

a binomial series, we obtain

1 0

In (8), it is understood that if 0 is a positive integer, the series
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terminates; that is, all terms with I > 0 - 1 are zero.

The interchange of summation and Integration in (8) is justifiable.

Hence, we can write (8) as

I(U÷R) n-1i $-(I (+Y+i-I )nd

• rtr rn) l- 00 f
r I at 1 ) (o, -8y(tn+l~ d

1-0

nr(awB yn- 1 0- r•'-
* ni 0(.l)i( 1)/ (•+y+ 1 )n+l (9) ,,•r(cz~r(p)r(' Y 0 1 M•'~~

INC

In particular, the Integration given in (9) is valid over a larger range of the

parameters than specified in (7). Specifically
j h

R+y'l (l-R)0"1 (-lng R)n dR a O r(n+l) (10)

whenver ~ 8 n 0. Thes ( 1) (,~+yi )n+1

whenever c + y > 0, 0 + n >. Those facts will be subsequently utlized.

The readar Is referred to Appendix I for various details relevant to these

remarks and calculations.

Some particular cases of (10) are worth noting. If 8 w 0, we have

f Ra+y'l (l-R)'I(-log R)n dR a r(n+l)c(n+lx+y) (11)

where c(r,s) denotes the generalized Riemann zeta function and ý(r.l) - C(r)

is the Riemann zeta function.

Combining the results of (7) and (9), we can write down the posterior

distribution of R given Y =y as
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4a

R1 a1 0 0-v~n>O (17)

• ('l)i(8"l) /(C&+Y+i)n+l
"1I0

Finally, we consider the less function L3 (RA) - ((1-R)'-(I-A)'). Here

the Bayes estimator is given by

(L - 1 (18)

Since

Q+-I0,

S (I-R)" (-log R)n dR

z((C-R) "l-y) in - (19)
"l tirn+l) jo(-l)i(O- )l(M+y+i)n+l

.!A

and since the integral (19) converges whenever 8 + n - 1 > 0 , we have

S(Ii (1-1)/((•+y+i)n+l
II

W1(]-R)_']'jY}Y jag0• (20)

i•O ('l)1 (0(1/(+Y+i)n1
4 a. , - nil (i)(ayl

u:A. i.Dox , )i* )(+~i)~

10

Then, we can write V

Iw (L 0 .n (21)Z.
MO L3

Applying the Pascal triangle identity, we have
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(L imo

11l0'l(• )/(, +y+ l )n+ l

Wi• 1- )l032)l(,+Y+,+l )n+l

- . (22)

Vim-m (I /(+Y+2)n+l

k'

Win

Comparing (14), (17) and (22), we have

octo.v(L2) . (t ) (23)

and

f0 3t ( ) . ,9 .1CLI) . (24)

Thus, we have shown that the three families of estimators have the same

form. Hence, it is possible to study all of them simultaneously and a single

asymptotic expansion, given in tho appendix, permits~ simultaneous analysis of

their asymptotic properties.

One caution should be noted. We have listed the posterior means whenever

"the posterior means exist. However, in some of these instances the Bayes risk

will be infinite. Specifically, for the loss function L21 the Bayes risk

"exists whenever 0 + n - 2 > 0.

In the statistical literature, one frequently finds the following Bayes

estimator of R (see for example, N. R. Mann, R. E. Schafer, N. D. Singpurwalla

[6), p. 398). This is the estimator obtained by using the loss function
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LI(RoA) and assigning a gamma distribution prior to e, the parameter in the

exponential density (1). A brief sketch of the calculation of the estimator

follows. The prior is given by

-*(O:YS) = 6 e"Y'1 e60 /r(y) , (25)

where 6,Y > 0 and 6 > 0. Then, calculating the posterior distribution of

e, when the data is given by the total time on test statistic (3), it follows

that the estimator

y+(Y)1 (26)

the conditional expected value of R given Y • y. Subsequently, this will

be compared with (14), (17) and (22).

Remark. To the authors, one of the more interesting properties of these

estimators Is the role played by the Riamann zeta function and the generalized

Ritmann zeta function. From (11), we have that

Amgo (L1) C ;(n+l , o+y+l) c ;(n+1aiy

as I0,31 2 (• 0 Ic,(L 3)

Further, from (21), we see that

Rail(L 3 ) * (c(n+l ,cM+y) - (cO+y)"') / ;(n+l ,cQ+y)

and if a 1, y = 0,

fRII(L3- (c;(n+l)-I)/•(n+l)
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Specifically, if in addition n It 6

' ft1, 1 (L3 ) • (T /6 - Or/(,'/6) A - 6

We conclude this section with some observations concerning elementary

properties of the estimators given by (14), (17) and (22). With no loss of

generality, we can examine specifically (13) and (14). From (13), it is

immediately evident that 0 < < 1. We now show that A is an increasing

function of a (or y) and a decreasing function of 0, which one would

naturally expect to be the case, given the respective roles played by a and

B in the model. Therefore, we calculate

_ fiR•+e(I-R)O'l log (1-R)(-log R)n dR

fRa+Y-'(llR)B-l (-log R)M dR

. +Y11-R)O'I (-log R ndR fSC,+Y"1(0S) (1'og (-S)(-log S)n dS

[fRO+Y-1 0 -R)O .1 (-log R)n dR)M

S .Thus, it suffices to consider

,[fo ( ) log (1-R)(-log R)n dR f, +Ylo(.)Bl(.I0 g S)n dS
%: f

- Ra+y 1(l-R)1 1 (-log R)n dR f s4+Y'l(l-S)Bllog(ls)(.-log S)ndS

f " olR+y (I-R)' 1 ('log R)n SO+Y(I-S)O' (-log s)n 112( -109`11-8) dzds'

from which it follows readily that A/80 < 0. The verification that

_9/am > 0 (AI/Jy > c) Is completely parallel and is omitted.
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.3. ASYMPTOTIC COMPARISONS OF ESTIMATORS

From the results of Appendix III (see A.82), we have that

I I 1 16

Auto (I 0 ,- y" (I n-y(- "1 ) (27)

R0190(L1) (8
, I i i|i,"

F ny

*4 R (L 6"1ny)(- 0 (29)

As Is evident frcm the above$ the differences are small. For large n,

AA /-S iis, ,(C,.,.910 /"1) (30) •

and in general A(O,0)(Lt)/AQ O(Lj) - I + 0(n')," 1 gs J :g 3.

Naturally, since the maximum likelihood estimator is e 16•, one expects

the estimators above to be asymptotically equivalent to it. Note further that

t1s bounded for all . > 0.

"Similarly, for the "trad•'±onal" Sayesian est8•mw•t (26), the comuparable

representation in

My. 6) ( Y ny 131)

* and R(Y f•)/&,B( L) - 1 + O(n" ), i 1,2,3. Thus, it appears that the

differences are about as small as could reasonably be expected.
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4. SOME PROPOSED ESTIMATORS OF R

The minimum variance unbiased estimator of R has been studied by

E. L. Pugh [8), A. P. Basu [2] and S. Zacka and M. Even [12). In our notation,

this is given by

-••R -ý (32)

The asymptotic representation for R* is easily seen to be

I IR* Y n " 2ny' (1 + O(n"2))

We can also adapt the estimators of the exponential parameter givesi by

G. M. El-Sayyad [4] to correct them in a naive manner to reliability estimators.

Naturally, the optimality hypotheses used therein no longer apply,

R1 exp nP (33)

(e (1 + O(n-2)) (34)

E1-Sayyad also provides an argument which leads to the well-known

estimator

where ,(n) is known as the Psi function or digamma function. Fron this, one

deduces
R a ee•()n (35)

and from well-known asymptotic properties of 0(n), (see for example,

M. Abramowitz and I. A. Stegun (1]).
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1I1 - 1

, ,.. " (I + O(n 2 ) ) . (36)

The Psi function arises naturally in estimators as the scale transformation
i Invariant estimator for squared error loss. in this connection see T. S. Ferguson [5].

El-Sayyad also obtained some Bayesian point estimators for the exponential

parameter using the gamma prior and some loss functions which are generalizations

of the squared error loss function.

In the notation of (26), his estimators for e are

- (8+n()"1 (r(Y+n+a+B)/r(Y+n+))/ (37)

and
8z-e*ln"Y)/l&+ný), (38)

where cit, are nonnegative parameters in the loss functions used by El-Sayyad.

These yield estimators of R as follows,

-6
*1 a e 1 *1,2 (39)

Sand asymptotically, we have,

R1 "e" "n n. T (1+0(n2)), (40)

and

1 y' 1 6

Wy- *f-y -nV + C (,2))(41)

Various Bayesian estimators for the exponential parameter were stggested

by S. K. Bhattacharyya [3]. In one of these, he considered the range of T 1/0

to be finite and used the uniform priow,
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g(T) (B-c)"1 0< s B0 < .

0 , otherwise. (42)

He also considered the inve•ted gamma density

g().e•/ T• 0 < T<- P,v• >0 (43)

u r (v)

Letting
X

-t n-1 ,
Y(n~x)a t d

the Bayes estimate for (42) is

% n-1.n+1) A Y 04

% R 3 a(44)Y(n-l~ny) (I + 1/ng)n'

where * Y:,i) -Y (n,
*1")

For the prior density given by (43), the Bayesian estimator was snown

to be

A,-n-.•:'"', n•l)R4 ( + (45)

which asymptotically behaves like

1% +

4 (1 + O(n 2)). (46)

He also calculated the Bayesian estimator for the exponential
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prior obtaining,
I.(n-

f"5 * (Kn-l(2 I Kn. 1 (2 ) (1 + 2(47)

where the prior is given by

•;•',:.. e( .•. /< , < <- X > 0 ( 48)

It can be shown that (47) may be approximated by

-',':1 -(n-i) '
SR ( + (49)

, ,

for large n. Fomula 9.7.8 p. 378 in M. Abramowitz and I. A. Stegun (1)

may by used to obtain more detailed asymptotic information.

In the papers by S. K. Sinha and I. Guttman (10), (11] the improper prior.

9(T) *T", 0 <( < c (50)

is assigned to r /e, obtaining as the Bayes estimtor

(I • 1 + 1•,ny-)"n ,(5 );

which yields the asymptotic expression
; -( 1 1

ftU y- 2nyl (I +I 0(n-')) *(52)

V. M. Rao Tummala and P. T. Sathe [9] employed gamma priors and obtained

"minimum expected loss estimators" for the reliability. They compare these

estimators with the Bayes and maximum likelihood estimators for quadratic

loss functions in estimating e
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APPENDIX I

In Lhis appendix, we study the series given In (9) and establish the re-

*, marks following (9) and (10). This can also serve as a justification for the

interchange of operations used in deriving (9). Specifically, we estab'ish

the following

Theorem A.l. Let

) ' (-I)' (0 &+i(T+l (A.1)

where t >0 , and T and 8 are real, and where

"4 1" 0 (.A.2)

Then I(ctL.O,) converges whenever 0 is a positive integer. If 8 is not
a positive Integer, I(a,*O,) converges if and only if 8 + T > 0.

Proof. Clearly, if 8 is a positive Integer, the series (A.1) terminates

-4 and convergence is trivially verified. Hence assume that 8 is not a

positive integer. Write

* T~

i<-

i)} "+ •. ( 8Sl)('l)i(,+ 1 )'(+l) . (A.3)

The first sum has a finite (possibly zero) number of terms. Hence, to study

convergence, it suffices to restrict attention to the second sum, which we
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write as

1 C Y I) (A.4)

where

r I, C 1, Y 1--, if I :6 0

r a [0]+1, C8 a(- 1  (0-l) (8-r+l), Y-(r-0) if > 0. (A-5)

Further, in (A.4), vacuous products ar's interpreted as unity and Y is always

positive.

We now determine when (A.4) converges and obtain estimates for the tail

of (A.4), when it is convergent. Hence, it suffices to consider

""YIY+l 1... IT+i-r)+(+ 1)
¢, r i) = ... '(A.6)

which has all terms positive. Note that the sign of (A.4) is determined solely

by Ci.

,. Now

*~i -r•.'log II (Y+•J (CL+i )-'1C+I /i 1! 9

":'•, (Y+t-r) log(Y+1 -rl-(Y+i-r)-y log Y + Y + ½log [(Y) kY+i-r)]

2 2

44
I(~ r [lo i I m+ log( Yr]+-lg~ log m lo m

F Y I
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For M sufficiently large, we have for all I M,
Y-r•. I+ F <: eT e

and

0) 3I 1+ )<"•

Thus,

(y+ (H.'(+l/t sd(T)() "Ye2'+" tYr'l (A.8)
J-o1

where

d(T) { -(T+I)
< - . (A.9)

Therefore. we have shown that

I Y - , (A.1O)
ikM

for some positive constant c o c(Y,r,T). From (A.1O), we can immediately

observe that 1M converges absolutely whenever Y-r-r<O. Thus, from (A.5),

we have that if B > 0, I(1,B,¶) converges whenever OB+->0. Similarly, if

B s 0, the same conclusion holds.

To establish the converse, note that

log H[ (Y+J) (M+i)-(,+'+)/11 a
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(Y+i-r)(log i + log(l + IIjALJr-Y log y + log Y + log i

+ Ilog (I + +-r I(,-r) -" (.1) Yog(, + a)

-(÷+l) log i - i log I - log , Io . log (211)-

Now, for N sufficiently large and all i > M
N:

(Y+l-r)"1 > 0

•,: 0 20) g 1/12

"and

*°Id 1•~ ~ Y r) () + (l-)/ yl-rl) .

Consequently,

-. • ]I~~~~~ (Y+j)) a+)(+),l•

1, 1 1 1

(2w) 70Y y YY'-l Y"T) ,, (.H,

wh re dl(T) is defined by (A.9).

Thus
:: ~ ~~IM !> k !t''':-.N t_ ' yr-- (A.12)

b>M
where k k(Ysr) is positive constant. Thus IN diverges whenever
y-r-x >_ 0 and thus diverges whenever o+T o 0, establishing the theorem,
Remark. The above analysis permits us to readily estimate the tail of the
series whenever 84÷- > 0, since

)' j,-(PI+'l+l < j'"= x-(llw+¶)ll~ " (Cll-1+) -(B~

(.,."*;) (A. 13 )
: ".()
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APPZNDIX It

Zn this &ppendixe we obtain a vomplete asymptotia expansion (n*) of

I -1n (affy) a R" (I( R) 0_1 (-log o

'7j where y -n, 0. Zn parti•ular, we establish the following theorem.

Theorom A.2. For y : 0, a > 0, as n ÷, for any 6 k O, - 2,3,.,,

I (0,0)y) -2w/( k (rI(e)P /.Y r/'2

n ~~n( 'k n r n

_a + 0- ) ((. 142

where

%(0) 0(0+n;) - n log 0 - 1)lo1-e ))

and is the largest positive root of Mn(O) - 0. Further,

n)" n n '" n -
0- 1 (('-* - (A.16)

2 r/2, r even

0 r odd
.•. (A, 17 )

and

"(r) (3)(k) M. .. k
k (0) -(0(-1) 4 (0) .... (0)/MA 1 31 ki
nk n n 'tk

where the sum extends over all A3P "90004 ; 0 with - j - r •

In order to prove Theorem A.2, it is desirable to introduoe a nuubor of

prelimiaary 1-mmas.

'Lemma A. . For j - 1,2,...,.•.-j lJ(j ) ((0n-1) b, 0-1-6- nOr-

S(a) - (+ny)6- (-1) + bU-e (A.19)
"nej -0

where 11 1, 41 j "0 0J I and
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r 01  1b 11 -1, bX5 0, £>~O

bgj L bg,j... - A-I)bl 1 1  ~j (A.20)I

hiternatively* we can winte

4Q+k)~ + (0-i) 1a(A.21)
0~ -.

where

a 1 .faO a, -j0, If 1 a., 0O, >

a U1  +~,,, 9A (A.22)

Fu~rther, for 2

:.,qand for n sufficilently large, for each fixed 0

S (A,24)

Zftqd MAU# )(A920)j, (A*21) and (A,22) are easily verified# rrom (A.22),

fat~t ~ (-Aa ) + 4 ( i-~a -4 1)at

X-0 t£ j rn-i

N Thus

for some constant c. since all - If it follows that c It1 and

Thus# from (A.25)g we have
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Aj'l 'l ) (A. 26)

(A.23 and (A.24) follow directly from (A.26), establishing the lemma.

Lemma A.2. A sequence of asymptotic (n+) estimates of 0* is provided by
n

0 - + 0(ni), i - 1,2,... (A.27)

where

1 " 1/4 , (A.28)

and 32
Ill"• -- ny - •-11.9

+ - + n i .+ ; (A.29)

1-e

Proof. For every C > 0, there is an n sufficiently large so that Mn (0)

in strictly convex on (c,#). Thus, N'(G) - 0 has a unique root 0 on
(€,m). (A.27), (A.28) and (A.29) follow readily.

Specifically,
1"-! 0n11
+ OI y

+.. B-)"/ ( +O-__1 (+1-) + 0"3n.-230
I + ( -

y ny - 1-- //

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _- 3

-1y (10 1~ + ' ) (A,30)

Remarki Applying lemma A.2, and letting 0 - 0 in (A.23), we can leducen

n n n n

Lemma A.3. For 0 ( r ( k, k ) 2,

K (n0) 1 (A.32)
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S0k K(r),r0, - 1,2 (A.33)

I*K (e)l ( k(2n)r/ 3 ;r r 3 3,4,...,k (A.34

for a sufficiently large.

Proof. From (A.18), (A.32) and (A.33) follows trivially. Therefore, we need

only establish (A.34). From (A.24) and (A.18), for n sufficiently large,

3 r k,

itn lol W n(20e 3 . "..k t ''k
.3 (k1 l....y 31 ,3 " ** 'kI

S/3k"k 3 .,k 3A•
8 8•

II~nan

as~~ ~ jL~ its 300"

S,3 3 SO 3

:J03
we have

Sj3 L r

and
k

31 < 4 r/3
Thus

S(8)I < ( 'r ZI/* 3 Is tlki 3 s ee

Now

306l k I 3.,~) M*j~I 1 3 "'€)

rn3] L (3 k. los

"M -1 3 k)

n-1 ml

rn-

Thus
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Ix(r)en r3"Ix 1e~ 4 k(2n)://'

From (A.31), the conclusion follows readily upon replacing e by 6 inn

(A. 35 ).

We now proceed to the proof of the theorem.

Proof* Let R - e 0  obtaining

zIn(a,0,y) - fo d"e6( n)(1-e')8-1elde (1A.36)

Let

g(e) - ee+nyII-e'eIs1n . (A.37)

Choose fI(n), 2(n) so that

0 < C (n) < n/(uin;) < 12 (n) a * . (a.38)

For P0l
j, l' (n) q(Oldq 4 f0l' (n),-eOQ+n;) OndO 4 T (ln))ln+le-T I n) (a+ny1 (A.39)

For 10 since 1-e-e 1 e(1-e I)/Tl, 0 4 0 4 TI,

fr,(n) T ., I r(n))0-1 frl(n) .~~;e+.d

10 )C I O 'O0\ (1n) a

whenever

T 1(n) nG4.ny

we have 11 1 (n) -1 (n)(•+ny)gTo ( (n

0T I (n) gOdIC -61 T - I(n) e * C&.4MA)

Proceeding similarly# we have,

) dO - - p(n) (n)e'(n)

where

f(8) - (1T 2 (n)) 1

From r. W. s. Olver (7], p. 70f we have
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fr (n) i)nU -- (z+nj)T (n)'n

-(G+nv)T (n)C ((n(n)
" "~•)I2 () W) n+1

• (¶2(n))

(ct+n) T2 (n)-n

Hence

-(01+nj) T 2 (n) ,nl

f"T (n)9(6)dO < •(A*41)

2( a+ny )T• (n)-n

From (A.15) and (CA36), we have that

In(G,~,Y) *0 • dO , (A,42

Now write* for k 0 2 k

2)1 N-(:k

+ Wn (0) (A.43)

where l-ik+1
(k1 ) n(k 1

i1k I)(Wn (A.44)lwnek (k+1 . nt

and li £es between 0 and 6*6

*0

J, rom (Ae30) or (A.15), it• is' easily seen t~hat 0- n/(Q+n;) + o(1) and

t;hus fre. sufficient~ly large n,

T 1(n)" nT 2 (n)

Consequently for 0 (T Tr f(n)) rom (A.24) and (A.44)p
1 2*(T2(n)'•l(n)) k+1 (3nk ,.)

IWk ()1 IC 21 1n) (A,.45)

Now write g(O) as

r-0 .L v t M()(en))A
L-3 n

-Wn (a0)

• • (A.46)
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where -n ";(en)" Then write

k (0-9)
rO I! t- Tk n

3 k 143)3 .14k) ( 0)
__ __ _ n n n rt

A =-- I • (e- 1 '( n). ,(r!
jE l A. .. . ., r-O Al ,3,..., O 3~) 31 3 * i"'kl

-1 •+ I J-kl3 (A.47)£,,3 £3, ., ,)kkIt A T j

:-3 A

where the mum is over £3A...,0k •' 0 with £iA: - A. Thus, we can write

(A.47) as

kc M
1+ I K )(e-e)£ + x )(e )- , (+.4 )

AW3 nx Ak+l k

where

k i1* k~ k Ic P
(A) *-), a 11 & I it Ii (A-49)

ni £ etJ-n3 j-3 Jjw3

Acoordingly# we define

n n:e-1nl(01 ;10-6 )2 Ic

qj8) = I Kh'(e-e k. e (A.50)I' P - 3 '; "

•i and consider

14 (0 ) ' '.h ,0.
• n n I q(O)d8 - k) - I * (A.5R)Then J
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*

N (6) T (n) T (n)
Rfk hk(O)dO + fol q(8)dO + 21 Ca Ihk (0)-9(0)IdO

+ g( )de + (Od } .(A.52)
2n96d + 2 (nhk(O)dOl

rrom (A.34). we have

11+ 1 (1) * A ka/x (0-n) 4 1 + k I (2n~)~ ij(e-e5)A-3 
A=3

Thus for i*(n) > a
'42 n'/t.

]fT (n) hk( d -m s T2 n ," 4 0 +l', -e -

(1 4-) rc ") •j

setting vw In A _:2,
2 (64) we obtain

2• s . ( .) k ( ,) oo f- - " -l+ nk ,
K 6): "Cd ~(i ) x! 'Il-.I ,/

n ~-2 ('r 2 (n)-) 0: s

Then# apPlying (A.31) with j 2 2# and (A.41)

2 2

. 1 f -i \

S
21/2- (

N ~ ~ ~ !r(T2 ( i~2k I
22- 2

1/2; (([ (n) (T
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2* 2
kc 41/3 rYTf))1

+ k £i n- 2 A/n ...

the last inequality following from inequalities for the incomplete gamma

function on pagvu 66 dnd 70 of F. J. Olver (71.

No let n <,T(n)-9 .e. T.(n) < n ,o 82 Th • for

VI~~2 n n 1 1 2-

n sufficiently large, 3 4 £ ( k,

U n:::e2)£L+I)/2/ (n * 2( (( l*-e) (/ (1n)/-( (kn-)/2)

n Z/6 (! 2 n)(2)2

"- n/6 2 21n)2 n

2 -

A~X/ < c£ (49+3)/3 -n2) 2 (44+3)/3 -1/6 ( 3

similarly,

2 2 n 2

Consequently# there is a constant c k- such that

14 (en j ___ 26;2 /4
la Od 1Ae5412(n) k- +6

n

Similar calculations establish the same bound for
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Mn~e ) r (n)

(n)
We now consider ln ) nf 2  (h (8)-g(O))dO. From (A.46) and (A.50),

a ' (g0e) - h )()) 2 ((1 + KM(
L+3 +

o. 1

( 8) 11) ••a £)1(A.55)
1 (e-e)) .,..

1wk+1

'' &4Ia4 &31 o lf~~ety ag ,;:

(n) -'r, (n) )k+'

IW n(O)I ()CI 21--

since It- I 2(n) - T1(n) 4 2n" 3  . Thus

1- .- o((.r(n)- 1 (n))k+ n)

anid

IWnkI - Oi(T 2 (n) - (n)) l l+ n)
anl n ÷" urther from (A.34),

Sx()(-o•) k (2n)JtkI -k+ 1

. .... •.(k+l)/3  -(k+1) ( . k+) (A.56)
2n)2'/ yl(T (n) - T 1 (n))

2 '
aI~A.4(A.56)

2 l'(n - rn)) I 0 a( 2n * (,

.+£I •. K )(-i )A (2k( 2n)1kI11/ 3 Y[k 4lllT(l) -c(lk+1 (.57) -
'i A-~~L k+ 1'..,.

A..

i*I
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.J

for sufficiently large no Similarly
-Ii

-i + I X (
P--3

ON I i. 0('3 (n) 'rln (n )n(A
k2 1+

* Thus

"I x (•) 1 +l 2 n - ,n) -

-(- O(F 2(n) T I2(n) - ln)) (A.959)

* ~ Rliezcs

T 2 ~)C(n) _9:,~)2-

4 I(n)1() -h(O)186 4 2 (n 2 Tr 2k(2 l) (k+1)/3 I

t-3 Co)k+1 k+1
(n)) O(C2-T n))~ dO2 1  2 0 n1

1l(n)/(1 -

* O(Ir 2 n)c 1 n)k-hlllde l)/3)" '1(n/nl-.k-6)3 -2d

I k+1) (k+l)/3-f2rm (n)n 2

_..( " .( Wl) -T (ln))k+I n 0(k 2-•l lk/l f dO Y -e0n 2

2- 1(n 0/ 11

- . W-' "( n ) ) k ( n ) ( k + l ) / 3 - (rn

-l n5 5(k+1)
0 (n-(A.601

,From (A,37) and (A.40)

(ln) n+di (0-rnv )Tl(n)
0fo glOldO ';(Tll ) rlTlln)) ,
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where a wo d,1 4 1'

and

r (T1 (n) -" "" !:1 -e "•1(n )

Thu(
-•." T1(n) -N (e )

-- :•: Jo -. ~d/

""" (I*(n) T (n))(ny) .. (..

< r 1 (n) < , (A961)
for n sufficiently large, we can write

4
hw (,n)) (T1(n))/,1._-n) < dl(y,9) (A.62)'

Sdhere d ) ds not depend on n. Similarly,,

,( () 
(A.63) '

g)0 (G+n;)r 2 (n)-n

where

"" 1f (0) " 2 (n)f(O) ,

•" and frm (.1), for n suffiioently large
,": £I(0) < d2(i,Io)".*

where d(2,9) does not depend on n.

"Note further that

(*+ay)r 2  - ,) n , C+nj) (0_n

556

S . . . .

I



. (÷+ny)({ ÷ oC"

- 0(n 2/31 (A.64)

Therefore, combining (A.62), (A.63), and (A.64), we can write

a 1 n nlg (n))~ (8 -r n))(a+ny)
K (an*+ logdf0  g(O)dO) n ~ n lo ;-

+ log 4l(y,B)

and

T (n)\
S(0.) + 1.9(f g,2 l(0)dO)) 4 n log -) (on 2

+ log 2-(Y, + 3 log n + log , (A.65)

where a is a suitable constant. Accordingly, we consider the expression,

for 1 - 1,2,

2*

m1lo(1 T1()-(n)-

n n ,v-

• ))

*~ (0n(6Yn)Cn))innny

(T(n)-6i*(n) -(T 1(n)-O0(n) )2
0 20
n 3

+ O((.r-O (n) )•

Now, since 6 - + On"1), we havea --
y

n I --o-- - (- (n))(l+n;)
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W n((Ti(n)-8 (n))(y•+o•-)

2,

- n 2 (+ 0(n'

2

- G(O -T (n) - ny(n-T (n))-

'3.
S((T 0 n))

1..

1i ( -T*(n ) I6() - -6'
SO(n 3 (A66)

*Thun S• • -26 .
3

T (n) -M 10* - A

ai gq()d6/e n n ) " -3 (A.67)

I

Ior 2_ (n g(we/ A n ICve4 (A*68)

( +

-K 8" -x *) "- -

n:. l(Oe/* n 6 2

n•nS)k ()-0 )

-nen -L. _ : +t3.~----

hk(e~de a: k(~ee 1~ 3 n , n

n n
a n " a i' 2 +(

thsesalshn t.te-onem.

S"n - 1/2 •

4- "T

(n n,

"7W Mn (0 " k (9) /,r/
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from the results of Appendix II, the various estimates of seotior. 2 all

have asymptotic estimates given by ratios of the form,

- f 8,ci+IG)dB/f (A.70)

We now proceed to obtain an asymptotic expansion for this ratio.

Since hk(O) has the form

Ilkn(:) 2-n(OO) 2 ,n)e,)

,.i

-Nw (0 ~(r)( 0 ~, r/2
n ~nk n r n

where Prare the central mments of the normal distribution with variance

unity. Now N (0:)# Yn, and 0 depend on go Thus, from (A.14) and (A.70)[ n :n

+ nn 4!42 o/Y 11G1 )r~vyY (s+1,0)

.(r) k(-7l,0 )l /(y (,B) )r/l '-'"

K(&(7)) /-
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We now employ the results of Appendix 11 to evaluate (A.71). From ((.o5)

0 0*

Xn (0 (,5S)) • n(0 (@4.l.5) "

g+ .:lg i,(,..-:)log,1 (A.72)U0 (,o+,), 4 (5,-1) ,, o€,, .'

Using (A.30), direct calculations establish

+ +
:!'+" ~(s5)- S '41I)o'/ + l"11-3

4- 2 2 - - -2 ; 3- -

O (a~l,•)ny n l-1y

- (5;,)...,•l + O(n" 3  (A.73)

similarly,

I I

I +- + 2 22
~(~1) ny A

,.' -+Ona-) * (A.74)
.92

n lovCO*(G,,)/S004,P)o

°-+I 
.

2 a2
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:3

"�"-e( 1' -- 1/Y) +••o - (+0-1 + 0(n 2 ) (A 76)
-2

I -0:(s+1,60)

and replacing a by 4+1 in (A.76) produces 1-.

Rewrite MAOO6) as

(1-. 1 - (*+0-1 + 0(n") .

Then -i

log ( ) - -1 . (1÷4-I)) +
-1/y; -2

n(1-e )y

0(n"2 )

"Thus,

1(:) - . / .i , (f") 1 (0.77)

,log (1- n + * -2 (A,77/y

Cons equentlye

K (8 (sa) - -2(0 (s+I,0)) -

,(A.78)
--2- 2

y y)

We nov evaluate yn(s,5)/Y (2+0•0). Since

.1 nYn(s.0) " * 1 3 2 - " (.~s0)2-(e~I)~In
nY (0e0) 0 _

from (A.30)

(8!(n, -))-2 -2 4 .2 I -+ O(n-2

y ¶ n - ..- - j)y
;n;
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and

n.

we met

yn(GOOV)Yn 0+11) -1 -2.. + 0(n-2)

and I,1u -/~

-nla lna )' -a1- d J 0i"2 )

Finally, we sete k - S obtaining

y9 ( u,0) /y C ). )r/2

n n

arnM (A.19)d (A.30) And (A.79)0 we see that

•- - - 1 nI + o(n 2)

Mn n

Coai.n1)ng (Ao31), (And6) (A.77), MOO)# (A.79) and (A.80)a we have

.4/4

____ ___ ___ __-I )(,__ -2 (k- )

," ew - • ,VW ,g(1 - O + n' , .A.82)

.* 1-1 4 (O (

54d

- te 't eI % sw ,• * m • •e (i.4oqbIeweeqt q ,•Q ' ' 1 . " u • - +t• o .*.q ' rJ ,
2 

.• )).- . . .'.82

-,y
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ABSTRACT4''
In a recent paper (Tanner and Wong (1982b)),a family of data-based

nonparametric hazard estimators was introduced. Several of these estimators

were studied in an extensive simulation experiment. The estimator which

allows for variable bandwidth was found to have a superior performance.

In this note, sufficient conditions for the variable kernel estimator to

be strongly consistent are presented.
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III 1. INTRODUCTION

Let (T I - 1,...,n be independent and identically distributed

fpairs of non-negative random variables. Assume that Ti and C are in-
dependent for all i. ,•enote by ST(f and SC(f the survivor (den-

TfT SCc

-ity) functions of T, and Ci, respectively. (See Miller (1981).) In

the random censorship model we observe the pairs (Y£pt) - 1,..,,n

where

-'I ~YI min(Ti'l

':T- <(1  C) :
;1 I i

n,

6

1n

The problem is to estimate the hazard function h(z) - fT( )/ST(W).

Define R. as the distance from the point z to the kth nearest

%11 of Y1 ,.""Yi, where 6 " " "'" " 1 (assume k 2). R
11 £i £2 h.

"then, is the distance to the kth closest failure neighbor from z. De-

fine J to be the index of the largest order statistic of the k failure

points which precedes the interval z-Rk , z+R 0]. (If z-Rk < Y(i

let J - i1- 1.) Let J' - min(n,J+k) and lec 6 be the indicator

random variable asiociated with Y
Mo1

The variable kernel stuimator of. h(z) is defined as

) n 6
nh ( " -k l K ()

!066 -
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This estimator has the appealing feature that the configuration of the data

plays A role in determining the degree of smoothing. In data sparse (dense)

regions, Rk will be large (small) and the kernel will be flat (peaked).

"In an extensive simulation study, Tanner and Wong (1982b) compare a

data-based 3-parameter nonparametric estimator, which incorporates :the kth

nearest failure neighbor distance, to a data-based 1-parameter nonparametric

estimator.with constant bandwidth. (The theoretical properties of the 1-

parameter estimator are discussed in detail in Tanner and Wong (1982a), while

Yandell (1983) and Ramlau-Hansen (1983) examine a truncated 1-parameter

"kernel estimator.) The performance of the data-based 3-parameter estimator

is shown to be superior to that of the 1-parameter estimator. Our ultimate

goal is to establish the theoretical properties of this fully data-adaptive

estimator. However, this is a difficult problem. We regard the present

paper as solving a significant component problem. One must understand how

these estimators behave when the parameters are chosen deterministically

as a prerequisite to the analysis of the behavior of the data-adaptive procedure.

Several authors (Fix and Hodges (1951), Loftsgaarden and Quesenberry (1965),

Wagner (1975), Moore and Yackel (1977) and Mack and Rosenblatt (1979)) have

discussed the theoretical properties of the variable kernel estimator of the

density function and the special case nearest neighbor estimator. We point out

that the estimation of the hazard is a somewhat more difficult problem, since

formula (1) depends on both the order statistics of the sample and the ordering

induced by estimating the hazard at a point and sorting the data to obtain the

kth nearest failure neighbor of this point. For this reason, direct applicabion

of previous techniques yields intractable formulas.
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2. CONSISTENCY OF hn

We assume that the survivor and density functions are continuous in

a neighborhood around the point of interest. We begin with some lemmas.

In Lmma 2.1, we present the density of R. We use this result in Lemma

2.2 to show that c converges almost surely to zero. Lemma 2.3 enables
'4 "k

us to use Proposition 31 of Aalen (1978) to prove almost sure convergence

of i (s).
0n

LDOMA 2.1. Let R represent the distance between the point x

and its kth nearest failure point. Let p - P(T 1 > Ci),

G(r) - Ix.'yI<r fT(Y)SC(y)dy, F(r) - (1-p)G(r),

G(r) ,T(x-r)SC(X-t) + fT(x+r)SC(x+r) and F'(r) - (1-p)G'(r).

"Then the density of R.k is.

n-1 f- n
"! ~f n ' F(r)'(I - F(r))n'kF'(r) .::

PROOF. The probability of m censored observations in a sample of

size n is given to

P(m) - (n)pm(P)n-m

In addition, given that m observations in a sample of size n have been

censored, the density of Rk is given as

1546
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P(rim) -(n-u)(m-) G(r)k l(1 -G(r))u G' (r)

The result now follows by direct calculation.

"* LDOI& 2.2. Let k - k(n) * [n•J, 0 < a < 1, and let R1• be defined

as above. Then i. 1LU 0.

PROOF. Given 6' > 0, by Leoma 2.1 and repeated application of

.7integration by parts it In easy to show that

k-O

From Chernoff (1952),ft can be shown that this quantity is bounded by 2

where A(r) equals

[1- ('1 6)l 1 .51. -82 pP(1-,1-p + lo-2 - lo 6

with p -,k/n. It is nov straightforward to show that

- ~ ~ lg 1n{[ 1 1105 (1 C'~L i -- [l:) log2 (ne) -lO 2 (

For n suff iciently large we have -nA(s) < -nc', for some positive 4

,' < C, and the result follows.

LDEHH 2.3. Let RIk and k , k(n) be defined as above, with

1/2 < a <. Then

1/2n a..
log Tn Rk(n.) -
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PROOF. The result will follow if we can show that for all e > 0,

(nl/2 c
n-2 \log() k(n) <

Now

F(C)

.f n-i ) I t),-kd t

:os:n, Rkn S ' -k1
€;', 0where o -C One can how that the result wili follow if

n

1 f ( ) tkio, t)n-k
n -2 0

-.1SHen~~Prceedn anloorl to2 < e< 1 an 2u.2et ag , h~)<-n hr

jun n n

0 n

where, for p - k/n,

k(n) -109 2 epn 10lo2 (1- Cn)'- + 10g2(Pp) + 19(-P

n_ A__ ( 1 -1)t l-1
n-M 102 ogn n 1- 192) lo g n)

S1/2

Hence for 1/2 < a < 1 and sufficiently l~arge n, -nA(n) < -n ,where

-~ 0 < a' < a~, and the result follows.
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THEOREM 2.1. Lot k k(n) - [In], 1/2<0<1, and R be

defined as abuve, let K(,) be a function of bounded variation with com-

pact support on the interval [-1,+1], let h be continuous at x, then

"W (a) ""-I h(s).

PROOF. Let An {sup (s) -h(z)l > E) for C > 0. Now choose

s8uch that (a- 218) 0, then

An su k (a) 8(rn)An ~ n supRk(u) ~
A. Mi z

Now

P( n PkA n s~up k(m) > + P(An s1up R () <~

and by Leuma 2.2, Rk 1251 o. Hence we used only consider the event

(An n {sup Rk(Cm) <}}. Now by the triangle inequality one can show that
Qmn

fAn shupL () IA nSu u A;, nUsup <

"=2:n mkn 2kn

where,

A' " ,up (1 K(u)d(z .2R()u)_u
- (u) dR(z- 2R~~~) . .n e-n 2-Rk(,u fI,(l)u 2

and

A'' J K(u)dH(z- 2RPk u) - h(s)
MI-'an ( ,) flu -
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Regarding the first event, using an application of integration by

parts, one can show

$u, Rkz.>2kn y~-6,+8(I Te

since K(-) is assuaaed to be a function of bounded variation with compact

support. But by Proposition 3M of Aalen (1978) an# Lema 2,3, we have that

lim F &up c sup 9(c,-•y) 1/2R(m) .0- .
St. y n E [s-26,%+261

Regarding the socond event, it is Immediate that

Ih N nufk(') {An'

Therefore, if the function

0 -0

f(f) -K(U)h(x-20u)du h(s) a> 0

is coutinuous at x, then l:a. P(A'n)" 0, since RIk " 0. Now f(a)
n-00

can be shown to be dominated by

max Ih(z- 2au) - h(z)I IK(u)jdu.

If we let a 0 0, the result follows.
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0. THE EARLY INFLUENCE OF W. EDWARDS DEMING

SLA 3 ON THE DEVELOPMENT OF STATISTICAL QUALITY CONTROL

IN THE UNITED STATES AND IN JAPAN

• .N a n c y R . M a n n

Department of Biomathematics

UCLA

Los Angeles, California 90024

The first time that I heard a detailed account of W. Edwards Deming's

early experiences with quality control, I was in Washington to attend an

"International Conference on Fatigue Failure of Engineering Structures" and

to give a paper there. It was 1969 and the 69th year of his life.

Some time before the conference, I received ar invitation to join Dr.

Deming and another conference speaker who was from the University of

Lisbon. The invitation was for dinner at the Cosmos Club on the first

evening of the event, I accepted with some feeling of anticipation, and

then when I arrived In town, touched base by phone to find when I should

"meet them for the occasion.

At that time I discovered two problems concerning my projected fellow

dinner guest. First, he was not the Portuguese professor whom Ed Deming

had met some years before, but a younger man with the same unusual last

name. Second, he had stopped in New York, on his way to Washington
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from Portugal, to consult with a co-investigator at Columbia University; had

thereupon contracted food poisoning, or perhaps stomach flu; and had

rushed back home to Lisbon to -eek treatment or comfort or both. He didn't

make it to the conference, though he did later submit a paper for the

published proceedings.

So, it didn't matter that this was the wrong man; he didn't come to

* dinner anyhow. That left the two of us to eat and converse, once we met

in the Ladies' Parlor, just inside the ladies' entrance to the Cosmos Club.

(In those days, my consciousness of male chauvinism was languishing

comfortably, yet to be raised, so I paid little attention to this quaint

arrangement.) I might add that the ladies' entrance is still there at the

Cosmos Club, but Its use has been abandoned for reasons of security.

Mealtime provided a chance for me to find out how W.Edwards Deming,

who was originally trained in mathematics and physics, had made such an

impact on the discipline of statistical quality control and had had so much

infuence in its application in this country and in Japan.

Recently, I have refreshed my memory and filled in details in

conversations with him during several Saturday and Sunday afternoons in

his home-based office in Washington. These took place between his trips to

South Africa, British Columbia, the Netherlands, Japan, Korea and most of

the major and many of the minor cities of the United States. I have also

been aided in the following by documentation provided (directly or 4.

indirectly) by Churchill Elsenhart, Allen Wallis, Holbrook Working and THE

MAINICHI DAILY NEWS of Tokyo, the Issue of November 10, 1965.

It's useful to begin the story in March of 1938, shortly before the time
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Ed Deming left his position as a mathematicaA physicist at the U. S.

Department of Agriculture (USDA) to join the U.S. Census Bureau. At that

time, he arranged for Dr. Walter Shewhart of the Bell Telephone

Laboratories to deliver a series of four lectures on "Statistical Method from

"the Viewpoint of Quality Control" at the USDA Graduate School. These

lectures were published "by the Graduate School in 1939 "with the editorial

assistance of W. Edwards Deming".

Shewhart, in his 1931 book, "Economic Control of Quality of

Manufactured Product," had given his criteria for determining whether a

given set of numerical data was in a state of statistical control -- and had

given also the particulars of his corresponding control-chart techniques.

In a 1981 Interview published in MILITARY SCIENCE AND TECHNOLOGY,

Volume 1, Issue No. 3, Ed Deming discussed Shewhart's important

contribution.

"Dr. Shewhart first saw the fact that random variation represents

the ultimate state of a system, that when you have achieved that

state, then you have an identifiable process, and until then you do

not -- you have chaos in a small degree or to a high degree.

"Causes of nonrandom variation are called assignable causes or

special causes. And those are usually chargeable to particular, local

conditions that the workers can recognize and eliminate. And then

you have left random variation that defines the system, and from then

'1 on only the management. can Improve It. That was Shewhart's great

contribution."

In his first book, Shewhart was concerned with the application of his
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"methods and techniques in controlling the quality of industrial production

processes. In the USDA lectures and the book derived from them,

however, he not only reviewed his earlier work and the developments

during the intervening years, but also devoted one full lecture (chapter) to

"their application to the results of measurement of physical properties and

constants, and one lecture (chapter) to the "specification of accuracy and

precision" of measurement processes generally.

The editing of the Shewhart book, along with earlier work with Harold

Dodge at Bell Labs and Captain Leslie Simon (later Lt. General) at

Aberdeen Proving Ground, had a profound effect on W. Edwards Deming.

The ideas that resulted from this exposure are central to his total

S-, philosophy of dealing with problems of production.

He first made use of the material In the two chapters In the Shewhart

"book on measurement and precision in consulting he did some few years

later for the US War Department during World War I1. Shewhart's general

theory, however, he applied shortly after he became familiar with it. This

is explained by Dr. Churchill Eisenhart, Senior Research Fellow at the

National Bureau of Standards, in notes he wrote recently on Deming

accomplishments. The notes were to be read on the occasion of the

presentation of a fourth honorary doctorate to Dr. Doming, this by the

University of Maryland on January 8, 1983. Many of the facts were

obtained from "Revolution in U.S. Government Statistics, 1926 - 1976," a

1978 U.S. Government Printing Office publication by Joseph Duncan and

William Shelton.

"In neither of his books, nor In his other related publications, did

Shewhart mention or hint that his statistical quality control pr-ocedures
•571
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could be applied equally well to routine clerical operations, with

comparable beneficial effect. This i. obvious once one thinks of it,

and think of it Deming did. Statistical quality control procedures were

applied, at his suggestion, in the clerical operations of the 1940

population census, for example in the coding and card-punching

operations. The procedure worked very well. During the learning

period, the error rate of a card puncher was high; but with training

and experience, a good card puncher's error rate dropped markedly

and exhibited statistical control at a low level. At first, the work of

all card punchers received 100% verification or correction. Later 39%

qualified for only sample verification.

"Work subject only to sample verification flowed through the process

six times faster than otherwise. Deming and Leon Geoffrey, in an

article in the September 1941 issue of the JOURNAL OF THE

AMERICAN STATISTICAL ASSOCIATION, estimated that the

introduction of quality control saved the Bureau $263,000, which was

transferred to other work, and also contributed to earlier publication.

Use of statistical quality control procedures has been a standard

practice at the Bureau of the Census ever since."

The next relevant scenario began early in 1942, soon after war was

declared against the United States by Japan, Germany, Italy, and their

allies. By then Ed Deming was well established at the Census Bureau, but

was also working half time as Consultant to the Secretary of War. Recent

Wilks Award winner, W. Allen Wallis, now Undersecretary of State for

Economic Affairs and then on the faculty of Stanford University, tells of

those times in the June 1980 issue of the JOURNAL OF THE AMERICAN
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STATISTICAL ASSOCIATION:

"The atmosphere there that spring was satirized by a squib in the

student paper saying, 'It is rumored that in the outside world there is

a war and a shortage of Coca Cola.' As one of several statisticians -

Holbrook Working, Eugene Grant, Quinn McNemar, Harold Bacon -

seeking some way that we at Stanford could contribute to the war

Saffort, I wrote on April 17, 1942, to a friend in Washington, W.

Edwards Deming of the Census Bureau, that 'those of us teaching

statistics in various departments here are trying to work out a

curriculum adapted to the immediate statistical requirements of the

war. It seems probable that a good many students with research

training might by training in statistics become more useful for war

th3n in their present work, or might increase their usefulness within

their present fields...,.'

"Deming responded on April 24 with four single-spaced pages on

the letterhead of the Chief of Ordnance, War Department. After some

explanatory background on the theme that, 'the only useful function of

a statistician is to make predictions, and thus to provide a basis for

action', he wrote:

"'Here is my idea. Time and materials are at a premium, and there

is no time to be lost. There is no royal short cut to producing a

highly trained statistician, but I do firmly believe that the most

important principles of application can be expounded in a very short

time to engineers and others. I have done it and have seen it done.

You could accomplish a great deal by holding a school in the Shewhart

methods some time in the near future. I would suggest a concentrated
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effort -- a short course followed by a long course. The short course

would be a two-day sesson for executives and industrial people who

want to find out some of the main principles and advantages of a

statistica.l program in industry. It would be a sort of popularization,

four lectures by noted industrial people who have seen statistical

methods used and can point out some of their advantages. The long

course would extend over a period of weeks, or, if given evenings,

over a longer period. It would be attended by the people who actually

intend to use statistical methods on the job. In many cases they

would be delegated by the men who had attended the short course.'

"'I would suggest that both courses be thrown open to engineers,

inspectors, and industrial people with or without mathematical and

statistical training. Naturally, any person who has had considerable

statistical training would be in a position to get much more out of the

course, but few would be in this fortunate position...'

"On May 1, I was able to write Deming that, 'Your letter arrived a

few hours ago...The specific suggestions struck home so well that

Holbrook Working (Chairman of the University Committee on Statistics)

has already talked with two or three of the key people and arranged a

general meeting of everyone in statistics'; on May 21 the first letter

about the course went to firms supplying Army ordnance in the

western region; and the first course was given in July 1942 at

Stanford."

A short article by Holbrook Working, published in SCIENCE in

Novbmber, 1942 describes this effort. Working, after some preliminaries

and his description of the Deming letter, went on as follows.
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"The suggestion posed two problems: that of providing for the

requisite instruction, and that of bringing to the course men actually

in a position to apply the methods.

"Suitable machinery for organizing and financing the suggested

course was already in existence in the engineering science and

management War Training Program, financed by the Office of

Education. The institutional director of '%he program at Stanford took

up the plan with enthusiasm. Aided by active support from the

Ordnance Department, through its San Francisco District Office, hel

was able to bring together, in early July, less than six weeks after

the original suggestion had been received, a group of twenty-nine key

men from industries holding war contracts and from procurement

agencies of various branches of the armed services. These men, with

three others, entered upon an intensive ten-day course with classes

running eight hours a day. All thirty-two men completed the course."

Dr. Working went on to describe a second course, offered in Los

Angeles in September, 1942, and then discussed the personnel involved in

the instruction.

"Two Professors, Eugene L. Grant and Holbrook Working from

"different departments of Stanford University and Dr. W. Edwards

Deming from the Census Bureau worked together in each course. A

"fourth man on the staff for each course was drawn from industry to

"present the point of view of a man meeting, from day to day, the

"practical problems of applying the methods under discussioi.
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Dr. Churchill Eisenhart, in his notes on Deming accomplishments,

describes subsequent events.

"The course was such a success that early in 1943, Working was

chosen to head the now famous major national program that put on

Intensive 8-day courses in statistical quality control throughout the

country, under the auspices of the Office of Production Research and

Development of the U.S. Office of Education. Deming was the teacher

of 23 of these courses. By March 1945, they had been attended by

more than 1900 persons from 678 industrial concerns in the United

States and 13 in Canada. Many of the 'students' in the earlier of

these went out to serve as 'instructors' In part-time courses that

brought the message to an additional 31,000 persons in American and

Canadian industry, and 2500 persons attended other part-time courses

in statistical quality control. The program had an enormously

beneficial effect on the quality and volume of American and Canadian

war production; and 'prepared the soil' for the establishment of the

American Society for Quality Control (ASQC) in February 1946, in the

founding of which Deming also played an important role."

Ed Deming agrees that he did, indeed, play an important role in the

foundirng of the ASQC.

"Wherever I taught I told the people, 'Nothing will happen if you

don't keep working together. And you've learned only a little. I

know only a little. You must keep on working and meeting together.

Get someone to send out postal cards, and persuade someone to let you

use a room for an evening.' And they did it. It was that nucleus

upon which congealed the ASQC."
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In the 1981 MILITARY SCIENCE AND TECHNOLOGY interview, Ed

Deming stated in a few words the principal reason that the brilliant

successes in using statistical quality control methodology to increase quality

and productivity, later to be exhibited on a grand scale in Japan, were not

realized in this country.

"The courses were well received by engineers, but management paid

no attention to them. Management did not understand that they had to

get behind quality control and carry out their obligations from the top

down.

In our recent conversations, he expanded on this theme, discussing first

Sthe random variation that defines a process, a manufacturing process, say,

in an Industrial setting.

"In the wartime courses we taught people that there is variation in

all things and that the readings that one takes from a manufacturing

process must exhibit stable randomness, or they don't have any

meaning as far as defining the process. Any instabilities can help to
point out specific times or locations of local problems. Once these

local problems are removed, then there is a process that will persist

until somebody changes it.

"Changing the process is management's responsibility. And that we

failed to teach. Professor Working thought that it would be a good

*J idea to include management in the courses, so we devoted one

afternoon to letting the people bring their management. Well, some did

come, but most did not. And I don't think we had anything wonderful
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to tell them. We had no stories to tell them.

"By 1950, these simple methods that we had taught were working all

right, but nothing astounding happened. Not that they weren't

"accomplishing something, but it was only a small part of what could be

accomplished. The big gains come from changes in the system, the

responsibility of management.

In Japan, management did take responsibility for putting statistical

quality control methods to work. The story of how that happened begins In
1946. In that year, Dr. Deming made a trip around the world under the

auspices of the Economic and Scientific Section of the U.S. Department of

War. While he was in India, working with Mahalanobis,. the famous Indian

statistician who had founded the prestigious Indian Statistical Institute, he

got orders to continue on to Japan. Ho described those times to me.

"I stayed In Japan for two months to assist with studies of

nutrition, agricultural production, housing, fisheries, etc In that

way I became friends with and learned from some of the great Japanese

statisticians. Statistics was well established in Japan."

He is not aware of how there came to be so many learned statisticians in

Japan those many years ago, but he remembered that a Dr. Seito had been
__ :studying statistics at University College in London whfn he wae there a few

years earlier.

"In 1948, I went again to Japan, this time for the Department of

Defense, to do more of what I had done before. I made an effort to

talk whenever possible with Japanese statisticians. I would go to the

Post Exchange, where I had privileges, and buy food. Then I would
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lug it to the Army operated Dai-lchi Hotel where I had a very small

room. If I said it was 8 feet by 9 feet, I wouldn't be far off. Then I

would arrange for a private dining room in the hotel and serve the

food to my Japanese friends.
.. o

"Any food tasted good to them, I'm sure. We'd sit around the table

and talk. I had no vision of what was to happen. I just told them

that they were important to the country In the reconstruction of

*Japan. This Idea was new to them.

"Now, there Is a sub-plot Involving a Mr. Ken-Ichi Koyanagi, who

had earlier been in jail for 8 years -- ostensibly for being a

Communist. Whether he had been under house arrest or actually In

jail, I don't know. Probably all there was to It was that he had a

mind of his own and wouldn't go along with the war lords. I say this

because when it came time for him to get a visa later to come to this

country, there was no great problem.

"His major in the university was German literature. Most people

who rise in management in Japan never have studied Management

Science, thank goodness. It's better that they don't.

"In 1947 he formed the Union of Japanese Scientists and Engineers

(JUSF) consisting then of about 7 men, their purpose being the

reconstruction of Japan. Mr. Koyanagi held the group together. And

Dr. Nishibori, who was in the original group and later Chairman of

Japan's equivalent of our Atomic Energy Commission, told me that they

had nothing much to talk about. They would just eat and drink.

Suddenly one night, Dr. Nishibori had the bright idea that statistical
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methods could help In the reconstruction of Japan. This would be a

way of helping that wouldn't require new equipment, which they had

no means of obtaining.

"One of the principal problems of Japanese industry at that time

was that the captive markets of China and Korea that they had had

prior to the war, were now lost to them. And they needed to trade so

that they could import food.

"Came in 1949 a letter asking me to teach statistical methods In

industry. I couldn't go at that time, though I wished to. I had too

many projects going, so I kept stalling. I finally did go In June of

1950 under the auspices of the Supreme Commander of Ailed Powers."

THE MAINICHI DAILY NEWS OF TOKYO, on the occasion of the

presentation of the Deming prizes on November 10, 1965, described the visit

and the conditions In Japan Immediately following the war.

"The scholastic contact between Japan and Dr. Deming dated back

to April 1950 when Ken-ichl Koyanagi managing director of the JUSE,

wrote to Dr. Doming, then in the U.S. asking for lectures on

statistical quality control when he visited Japan later in the year. He

readily accepted the plea.

"At that time, few Japanese realized the significance of quality

control. In the prewar years, there were, indeed, some Japanese

scholars and enginee s who were engaged in the study of quality

control, and some of them attempted to put it Into practice. But no

company dared to 'narry out the wholesale Introduction of the

revolutionary idea.
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"After the war, the nation's industry was quick to rise again, but

the quality of its products were all but inferior. Faced with enormous

demand, manufacturers were a! busy in turning out as many products

as possible, and no one cared about quality.

"The concept of quality control made inroads into the Japanese

Industries in the form of an Occupation Forces order to communication

equipment manufacturers. When they started to employ the modern 6

production formula, some private organizations paid a deep concern.

Soon they stepped into the field and started dissemination activities.

"Independent from these organizations, the JLJSE also launched an

educational service of quality control in 1948. A series of lectures was

7 sponsored on the subject of statistical analysis of small samples.

Several Japanese experts gathered to form a research group, primarily

aimed at collecting necessary literature. But these activities had a

discouraging result: there was little experience and material available.

Still under occupation, Japan was in no position to obtain enough

literature and material related to quality control.

"Then came the offer from Dr. Doming to the joy and surprise of

all the people concerned. In his first lecture meeting in Tokyo in
U,.

mid-1950, 230 scholars and statisticians gathered, Impressed by the

exciting concept of statistical quality control uttered by the U.S.

scholar. In another lecture meeting in Fukuoka, 110 were present,

"Dr. Deming called on the students to come out of their studies

and, with courage and confidence, go into factories, to keep contact
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with, and teach, business managers and engineers, and to promote

their theoretical research on the application of statistical methods"

He recalls:

"I lectured In English, but I had a wonderful translator, Mr.
Hisamachl Kano. His father was a banker, anid as a child, he lived in

New York, London and Paris, so he learned English and French us he

was growing up. He probably learned Japanese at home."

"His English was absolutely perfect, with every kind of idiom. I

was very fortunate because I had him with me for the duration of

every visit for a period of over ten years.

.• Dr. Darning described to me the fateful events that Involved Japanesehigher management in the educational process and provided the critical

Impetus for changing the Image of Japanese products.

"They were wonderful students, but on the first day of the

lectures a horrible thought came to me, 'Nothing will happen in Japan;

It'll be a farce unless I talk to top management.' By that time I had

some Idea of what top management must do. There are many duties to

be performed that only the top people can do: consumer research for

* .example, work with vendors just for example. I knew that I must

reach top management. Otherwise it would just be another flop as it

was In the states.

I Immediately talked to American friends who knew the right

Japanese and before long, I was talking to Mr. Icharo Ishlkawa, who

had formed the great Kel-dan-ren, the Japanose association of top
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management.

"I had 3 sessions with Mr. Ishikawa; and at the end of the third

session, he understood what I needed to do. He sent telegrams to the

45 or so top level men to come to the Industry Club the next Tuesday

at 5 o'clock to hear Dr. Doming. And they all came.
;1

"1 did the best I could. I gave them encouragement. That was the

main thing. I told them that they could produce quality for the
Il

consumer, partly industrial, partly household, for the Western world,

"In return for food. Conditions were such that they would have to do

that.

"They thought that they could not because they had such a terrible

reputation when It came to quality. But they knew what good quality

was. Ask anybody in our Navy, and they'll tell you that. What they

made for military purposes was superb. But for consumer goods,

they'd never tried. They didn't know what It was to stand back of

any goods. At that time a Japanese item wouldn't lost very long;

there was no endurance.

"I told them, 'Those days are over. You can produce quality.

You havy a method for doing it. You've learned what quality Is. You

must carry out conrumer research, look toward the future and produce

goods that will have a market years from now and stay in business.

You have to do it to eat. You can send quality out and get food

back. The city of Chicago does it. The people of Chicago do not.

produce their own food, They make things and ship them out.

Switzerland does not produce all their own food, nor does England."'
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"lncoming materials were terrible, off gauge and off color, nothing

right. And I urged them to work with the vendors and to work on

." instrumentation. A lot of what I urged them to do came very naturally

, to the Japanese, though they were not doing it. I said, 'You don't

need to receive the junk that comes in. You can never produce

quality with that stuff. But with process controls that your engineers

are learning about, specifications as loose as possible, consumer

research, redesign of products, you can. Don't just make it and try

to sell it. But redesign it and then again bring the process under

control. The cycle goes on and on continually, with ever increasing

quality.'

"I knew the problems because I'd been at Aberdeen Proving

Ground, working there for the War Department, with people in

industry. And look at the Census Bureau. It was one of the largest

organizations to be Immersed in quality.

"One of the big problems of management is to define quality and

realize that there are several facets. One is what you're trying to do

for the future, whatever quality you're aiming at. Should your

"purchasing agent continue to buy this kind of paint, or should he

switch? But also, how about turning out product today? What is the

plant manager's job today?

. "Now only the management can work on that problem of defining

quality. It's a complicated problem with no easy solutions, but it's

management's responsibility.

"I tried to explain these things to them, and apparently they
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understood. They wanted more conferences, so we had more. It was

a terrifying experience for me because I was new at it. I was a

technical man.

4 "I told them they would capture markets the world over within 5

years. They beat that prediction. Within 4 years buyers all over the

world were screaming for Japanese products.

"I was back In Japan In 6 months, in Janury of 1951. They

already had had many brilliant successes, brilliant fires, just as they

Shad had here during the war. But that's not quality; those are just

dividends. The top management showed me what they were doing.

Mr. Nishimura, President of the Furukawa Electric Company, was.

himself working to evaluate the process that produced insulated wire.

He brought control charts to show me, and he was able to reduce the

amount of rework to 10%6 of what it had been.

Mr. Tanabe, President of the Tanabe Pharmaceutical Company, was

working himself in quality control. In a few months he was producing

3 times as much para aminosalyscilic acid as before, with the same

machinery, by just improving tho system.

"But you cannot improve the system until you've achieved statistical

control. Then engineers and chemists can see that it will stay this

way until they make some changes.

-1 "Now six months later here were these members of top management
showing me what they had done. Six months after that trip, I was

.0

there again, and a year later there again. They were working hard, . -

""and they were getting results. I made it clear to them In those first
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conferences that this must be company wide. 'Everybody in the

company has a job to do to improve quality. And as you improve

quality, your productivity will go up. Your customers will be happy,

and you'll have something to sell.'

"I also told them 'This movement must be nationwide. You must

teach other companies, teach your competitors, move along together.

As you learn,,tell others.' I didn't have to tell them that. That was

the natural Japanese way of working But I did tell them anyway.

"By the timem I'd made several trips to Japan, Juse was able to

teach hundreds of people. They had courses for people outside of

Tokyo in the daytime and courses In Tokyo In the evening for people

who were working there during the day. There were also courses for

management. They trained almost 20,000 engineers in rudimentary

statistical methods within 10 years. These courses today are booked

up seven months ahead.

Clearly, the Japanese appreciate what Ed Doming and statistical quality

control have done to change their destiny. The MAINICHI DAILY NEWS

describes the history of the Deming Prize, which symbolizes this

appreciation.

"The Doming Prize was created in 1951 by the Union of Japanese

Scientists and Engineers (JUSE) to commemorate the friendship and

contribution of Dr. Doming to the whole spectrum of Japanese

Industry. The prize has played a significant role to give an impetus

to industry in its dazzling growth.

"The Doming Prize is a silver medal. Designed by Professor
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Kiyoshi Unno of Toky< University of Fine Arts and some other artists,

the medal bears an'engraved profile of Dr. Deminig.

"The Deming Prize is divided into three categories. The pr!ze for

research and education is awarded to those who made excellent

resear'ches in theory and application of quality control. Another prize

for application is given to corporations or plants which attained

outstanding results in practicing quality control. The third prize Is

provided for smaller enterprises.

"The prize has been awarded annually ever since 1951. The

Doming Prizo C..ommittee ia responsible for the selection of the winners

from among a number of candidates. Parallel with the progress in

Japan in the concept of quality control, the selection standard has

been rising year after year, and the race for the laurels has become

keen. It is said that most corporate'candidates are spending years in

streamlining and reinforcing their quality control setup under the
4 guidance of specially invited experts before they apply for the prize."

Business Week, on page 21 of a special advertising section on "Japan:

Quality Control and Innovation" of July 20, 1981, lists the winners of the

Doming Prize for Application for the years 1954 through 1980 and discussiss

its impact.

N "Each year the competition grows in intensity, as more and more

companies volunteer to undergo the close scrutiny required. For the

firm that wins the Prize, and those that gain one of the associated

awards, however, the rewards are significant, in profits as well as

* prestige. For other companies, the ceremony is a time for self-

reckoning. The innovations in quality-control honored In any year

usually soon become national norms."
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..T4 ANALYSIS OF FERROGRAPHIC ENGINE WEAR
DATA USING QUALITY CONTROL TECHNIQUES

Robert L. Launer and Edward A. Saibel
-1-- U.S. Army Research Office

Research Triangle Park, N.C. 27709

0 •1. Background.

"----:it is generally accepted that wear is the leading factor in engine and
•.'gear failure. There are many types of wear, some of which are: adhesion,

abrasion, corrosion, erosion, fretttihg, cavitation, fatigue, melting, ablution
and delamination. Each of these results in its characteristic form of wear
particle, the Identification of which is sometimes difficult. There are many
"methods for indentifying these particles and for monitoring their development
"over time. One such method is ferrography.

Ferrography is a technique developed by Seifert and Wescott for separating
wear particles from the lubricant matrix and Apiting these on a glass
slide, arranged or sorted by particle size [4, 7]. This slide is then
examined microscopically. An indirect measure of wear is obtained by
measuring the amount of light which is transmitted through the glass slide,
subject to the amount of particles which have been-deposited. The
transmittance Is reported as the percentage of the area within the field of,
view which is covered by the deposited particles. Measurements are made

-reas on the slide corresponding to the large particles and to the mall A •il 5

particlei. The two measurements are called by workers in the field,(AL an, A
respectively., The particles are deposited by dripping the engine orC
transmission oil onto an inclined glass slide which is immersed in a magnetic
field. The larger particles are thus deposited first and the smallest
particles, last. A good survey of this method is presented in [6].
2. Statement of Obfe~tti9e, .....

Our objective is to produce an easy to use method for improving the amount
of information which can be obtained in Ferrography without an increase in
time, effort: and instrumentation. As things stand now, optical measurements

are made fro= the ferrogram deposit and an index of wear severity, Is is
calculated using an arbitrary relationship

I 2 A2
s - AL ()
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where AL is percent area covered by particles at the entry deposit, (particles

greater than 5 pm) and A is the percent area covered by particles at 50 mm

from the exit of the Ferrogram, (particles ranging from 1 to 2 vm.) [6]. This

index of severity, proposed by V. Wescott, is attractive because of its

conciseness and the ease with which it is calculated. Since it contains only

information obtained directly from the Ferrogram, this measure Is apparently
germane and relevant.

3. Brief Discussion of Current Methodology.

As a direct measure of wear, I~ is difficult to interpret. Let Is, As and
AL represent the time derivatives of I., As, and AL. Notice that,

a! alIs ls .
--- s -2As<O, and 2A >0,

s LL A 0
so that s 2ALAk - 2A$Ai. Therefore, a net positive change in Is can result
from either an increase In AL or a decrease in As* In general, simultaneous

increases and/or decreases in AL and As in differing amounts may result in

either an increase or a decrease in Is. In the following, we propose a change

in this index which will produce a direct measure of the ferrogram information

which is easy to compute and interpret.

A Ferrogram is an indirect measure of engine wear at a specific time so
that, for practical purposes, it can be considered a monitoring process. The

onset of failure is signalled by a fairly abrupt increase in AL or As or both.

Early failures are indicated by premature deviations from the normal values or

trends in one of these parameters. It would be very useful to devise a scale

for plotting Ferrogram values with automatic warning limits so that
interpretation of individual cases could be reduced to a minimum. If this

were accomplished with a preliminary sample or other past history (such as
factory test data) to establish benchmarks, we will have described a quality

control monitoring process.
Ferrogram measurements exhibit unpredictable variation which demands a

..,statistical analysis for proper interpretation. Although the statistical
distributions of AL and A, are somewhat normal in appearance [5], we suggest

that several repeated measurements be taken of each value from each Ferrogram,
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yielding average AL and Is so that the assumption of normality may be

justified by invoking the central limit theorom [3). Since these measurements
are taken from the same Ferrogram, there is the possibility of correlation
between them. AL and A. are, however, related to the extreme values of the
available measurements from the Ferrogram and are, therefore, related to the

extreme order statistics. Since the extreme order statistics are
asymptotically independent, [2), AL and As are assumed to be independent. We
will, nevertheless, present a method which will allow for correlation between
them.

4. Proposal for an Improved Method.

Let

x z sample average, AL9 at time t
y = sample average, A., at time t

ux(t) - expected value of AL at time t
V yt) - expected value of As at time t

02 m variance of A
x L

a2 -variance of As

P 0 correlation between AL and As5

Under the assumptions stated previously, the Joint statistical distribution of
x and y is

f(x,y) * (2ltaxoyAt-P2)'l exp [-g(x,y)/2(l-p2 (2)

where (X'.u 2 x-Px Y-1 - ,.g(x,y) - " ) 2p ( -x) C Y.) + (Y-Y)2, (3)
x Y ay 0y

The appropriate regions for monitoring sample values (x,y) are the ellipses of

equal probability density, for the probability %

0 exp I-a2/2, (4)ffLa[/2J ]
ff(x.y)dxdy -exp (a2]5)
A
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where A is the region enclosed by the ellipse [Il.

g(x,y) a&2 (l.p 2 ) . (6)
In order to standardize the graphical representation of the sample

"values, it Is recommended that the ellipses ( 6) be transformed to unit circles
as follows. When x and y are Independent the ellipse (6 ) becomes

-I xx Y-P 2 2
". -x 4 y a (7)

Let

, ar- (x- x)/ox and as (y-u y)/oy (8)

Then (7) becomes

r 2 + S2 Il. (9)

The new index of severity, J., is made by transforming the data thus:

U ---- and u . y1 (10)

Then,

Su 2 + v2  (11)

is the proposed new index of severity. This value should be compared to an
extreme upper tail percentage point of the central chi-square distribution
with 2 degrees of freedom. For example, the probabilities -. 01 and .005
correspond to the values 9.2 and 10.6, respectively. If there is correlation
"present these values are reduced, with the lower bounds 6.6 and 7.9
corresponding to perfect correlation. On the other hand, the onset of failure
Is marked by instability of the distribution of the particle sizes with AL, As
or both rapidly becoming very large, depending on the underlying cause of the
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failure. This implies that these measures change separately or Independently,

so that the deflation of these values due to correlation would tend to
emphasize them during the onset of failure. The appropriate critical values

in either case, then, could be obtained from the chi-square distribution with
2 degrees of freedom. We suggest using the value 10 (or 9 if the user is
conservative) for the critical value of 3s.
6. A Numercal Example.

-,The foregoing development might appear somewhat complicated, although Js

is only slightly more complicated than (1). We maintain that Js contains more
engine history and therefore more information on which to base automated
decisions. We further suggest that 3J and the related preceding formulation

can be easily computed with a handheld computer or even programmed for a
microcomputer. The following example will illustrate the point.

Suppose that it has been determined that a certain helicopter engine is
characterized by i.x(t)- 15 + .00625t, uy(t)-6+.003t, a 2x-11;', a-2.75, and t isx y
engine operation tim in hourt. Suppose further that the engine Ferrogram

measurements at 600, 650, and 700 hours are (k,, A) (24.8, 6.1) (24.1,8.6),

and (25.7, 12.7). First we note that ux(600)-18.75.and P y(600)- 7 .8. Then

M(24.1 - 18.75 2 =86. 7.82Le-s + 4.35

The other values of Js and the values of I are calculated similarly and are
given in the table below. Notice that while the succossive values of I
decrease, the third value of Js exceeds the critical value, which is a signal

of impending failure.

t 3

600 4.35 578

650 2.43 507

700 11.28 499
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"ATTENDEES

28TH ARMY DESIGN OF EXPERIMENTS CONFERENCE
20-22 October 1982

and

TUTORIAL ON NON-PARAMETRIC STATISTICS
18-19 October 1982

NAME ORGANIZATION TUTORIAL CONFERENCE

1. ADAMS, MARK S. MERADCOM X

2. ADELSON, L. x

3. AGEE, WILLIAM White Sands X

4. ASHLEY, WILLIAM L., II TACOM X X

5. BAKER, WILLIAM E, ARADCQM X X

6. BATES, CARL CAA X

7. BAUER, C. NPS x

8. BECHHOFER, ROBERT Cornell Univ X

9. BELL, R. AMSAA X

10. BISSINGER, BARNEY Penn State Univ X X

11. BOOT, BARRY A. BRL X X

12. BOEHNE, R. C. SSL, CDEC X

13. BOX, GEORGE E. P. Univ pf Wisconsin/
Madison x

14. BREIMAN, LEO Univ bf California/ I.:.

Berkeley X

15. BRYSON, MARION R. CDEC' X

16. BURGE, BOB WRAIT C

17. CASTRO, OSCAR J, White Sands X X
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NAME ORGANIZATION TUTORIAL CONFERENCE

18. CONOVER, WILLIAM J. Texas Tech Univ X X

19. COOK, CHARLES H. MICOM X

20. CORREIA, CHARLES A. Mat s$ Anal Acty, X

21. CROW, LARRY H. Mat Sys Anal Acty,
Aberdeen X X

22. CRUESS, DAVID F. Uniformed Services X X
Univ of Health St

23. CURRIER, EDWARD F., CPT TACOM X X

24. DAVIS, H. SSL, CDEC x

25. DAVIS, L. OTEA

26. DiGIORGIO, EMILIO NPS x

27. DOWLINGs J. SSL, CDEC x x

28. DEUTSCHER, WAYNE LTC Military Asst to X
Mr. Hollis

29. DUNN, BILL H. OTEA X X :'iX
30. DUTOIT, EUGENE F. Infantry School X X

31. EFRON, BRADLEY Stanford Univ X

32. ELSMORE, TIMOTHY F. Walter Reed Inst of X X
Res

33. ELY, R. L. John Hopkins Univ X

34. ESSENWANGER, OSKAR M. MICOM X

35. FARMER, JOHN H. TCATA X X

36. FERNANDEZ NPS

37. FOSTER, JAMES SSL, CDEC X X

38. FRENCH, STEPHEN A. OTEA X

39. FURMAN, ERIC SSL, COEC X X

40. GAVER, DON NPS X
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41. GILDENGORIN, VIRGINIA L. LAIR X

42. GRAHAM, BRETON C. CAA X X
"43. HARRIS, BERNARD NRC x

44. HARVEY, X. x

"45. HOLLIS, WALTER W. Dep Under Secy X
of the Army

46. HOLTERMAN, GORDON C. Log Mgt Ctr X X

47.' HOPPE, GEORGE W. Natl Guard Bureau X X

48. HUNZEKER, WILLIAM, MG USA Logistics Ctr X

49. IRVINE, NELSON SSL, CDEC X X

50. IRWIN, ROBERT P. CECOM X X

51. JACKSON, A. Waterways Exp Sta X X

52. JAYACHANDRAN, TOKE NPS x

53. JOHNSON, RONALD L. MERADCOM X

54. JOLEMORE, KENNETH A., BG DA DCSLOG x

55. KIRBY, DO*LD G., 14AJ TCATA X X

56. KLUGE, P. X X
57. KNAUB, JIM Log Ctr X X

58. KNISS, JIM AMSAA X

59. KYSOR, K. HEL X X

"60. LAPOINT, STEVE White Sands X X

61. LARSON, HAROLD NPS X

62. LAUNER, ROBERT L. ARO X X

63. LEE, CLAYTON R. Log Ctr X X

64. LEHMANN, WILLIAM L. SSL, COEC X X
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65. LENNOX, WILLARD J. MRI X X

66. LEONARD, TOM MRC X
67. LUNG, H. (Steve) R. Elec Prey Ground X
68. MAAR, JAMES R. Research Group, NSA X X
"69. MAHER, MARY ANNE White Sands X X

. 70. MANN, NANCY R. UCLA X
"71. MARDO, JOHN G. ARRADCOM X X

72. MARUYAMA, RICHARD T. TRADOC X
73. McAFEE, Walter Elec R&D Comd X X
74. McCLANAHAN, MASON E. TRADOC X

75. McGOWEN, DOUGLAS J. OTEA X X
76. McLAUGHLIN, GEORGE J. Def Res Establish- X X

nment, Valcartier,
Quebec, Canada

77. MERRITT, TERRY Log Eval Agency X

78. MERVILLE, D. SSL, CDEC X X
LFo79. MOATS, W. B., COL Log Directorate X

AF T&E Comd,
Kirtland AFB

80. MOORE, J. RICHARD BRL X
81. NEAL, DONALD USA Mat & Mechs X

Res Ctr

82. NIVISON, R.B. XB

83. NORDSTROM, A. DARCOM X

84. OBAL, JOHN NPS X
85. PARSONS, R. SSL, CDEC X
86. PARZEN, EMANUEL Texas A&M Univ X
87. POWELL, GERARD M. Natick R&D Labs X X
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88. QUINZI, ANTHONY J. TRASANA X X

89. READ, BOB C. NPS X

90. REICH, DONALD G. TRADOC X

91. RICHARDSON, G. SSL, CDEC X X

92. ROGERS, JEFF NPS x

93. RUSSELL, CARL T. Cold Regions X X
Test Ctr

94. SAIBEL, EDWARD ARO X

95. SANCHEZ NPS X

96.- SCOTT, DAVID W. Rice Univ X

97. SELIG, SEYMOUR M. Ofc of Nav Res, X
Dahlgren

98. SHOREY. RUSSELL R. Director for X

Weapon Spt

99. SIEGEL, ANDREW F. Univ of Washington X

100. SOVEY, J. X

101. STEVENSON, TODD E. T&E Comd X

102. STEWART, PERRY C.. Log Eval Ctr x

103. STRATTON, W. F. MRSA X

104. STUART. PAUL, CPT TCATA X X

105. SWINGLE, DONALD M. Consultant, X X
Las Cruces, NM

106. SYRCOS, GEORGE P. Navigation Lab X X
Ft Monmouth

107. TANG. DOUGLAS WRAIR X x

108. TANNER. MARTIN A. Univ of Wisconsin X

109. TARTER, MICHAEL Univ. of California/ X
Berkeley
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110. TAUB, AUDREY F. Naval Surface X

Wpns Ctr,
Dahlgren, VA

111. TAYLOR, MALCOLM S. BRL X X
112. TESSMER, JOSEPH M. Dept of Energy/SPRO X X
113. THOMAS, JERRY BRL X X
114. THOMAS, MARLIN A. Naval Surface X

Wpns Ctr,
Dahlgren, VA

* 115. THOMPSON4, WILLIAM R., COL OTEA X
116. THRASHER, PAUL H. White Sands X X
117. TURNAGE, GERALD W. Waterways Exp Stn X
118. VILLARONGA, RAUL, COL Log Eval Agency X
119. WEINSTEIN, JOE SSL, CDEC X X
120. WHITNEY, GARY CECOM X
"121. WILEY, GORDON S. SSL, CDoC X
122. WING, BURT X
123. WINTER, RALPH SSL, CDEC X

124. WITHERS, LANG OTEA X
.125. WRIGHT, SUSAN J. USACAC X

126. ZANSHEISTER, BOB NPS X
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